
Motor Control Blockset™
Reference

R2021b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Motor Control Blockset™ Reference
© COPYRIGHT 2020–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2020 Online only New for Version 1.0 (Release 2020a)
September 2020 Online only Revised for Version 1.1 (Release R2020b)
March 2021 Online only Revised for Version 1.2 (Release R2021a)
September 2021 Online only Revised for Version 1.3 (Release R2021b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Blocks
1

iii

Contents

Blocks

1

DQ Limiter
Saturate voltages (or current) in the dq reference frame
Library: Motor Control Blockset / Controls / Control Reference

Description
The DQ Limiter block generates saturated values of the input voltages (or current) in the dq
reference frame, based on the phase voltage (or current) peak limit of the inverter.

The block accepts reference values of d and q axis voltages (or current) and outputs the
corresponding saturated values. The block also provides the unsaturated peak value of the reference
dq voltages (or current) to enable field weakening control.

Equations

These equations describe the computation of saturated dq voltage (or current) values by the block.

magref = (dref)2 + (qref)2

When magref ≤ D− Q saturation limit.

• dsat = dref

• qsat = qref

When magref > D− Q saturation limit.

•
dsat = dref

(dref)2 + (qref)2
× D− Q saturation limit

• qsat = qref

(dref)
2

+ (qref)2
× D− Q saturation limit

Ports
Input

dref — Reference d-axis voltage (or current)
scalar

Reference voltage (or current) value along the d-axis of the rotating dq reference frame.
Data Types: single | double | fixed point

qref — Reference q-axis voltage (or current)
scalar

1 Blocks

1-2

Reference voltage (or current) value along the q-axis of the rotating dq reference frame.
Data Types: single | double | fixed point

Output

dsat — Saturated d-axis voltage (or current)
scalar

Saturated voltage (or current) value along the d-axis of the rotating dq reference frame.
Data Types: single | double | fixed point

qsat — Saturated q-axis voltage (or current)
scalar

Saturated voltage (or current) value along the q-axis of the rotating dq reference frame.
Data Types: single | double | fixed point

magref — Unsaturated peak value of block inputs
scalar

Unsaturated peak value of the input voltages (or current).
Data Types: single | double | fixed point

Parameters
D-Q saturation limit — Phase voltage (or current) peak limit
1 (default) | scalar

The maximum magnitude of the stator phase voltage (or current) that the inverter can supply to the
motor.

D− Q saturation limit (current) is usually the rated current of the motor. When you work with the
Per-Unit system (PU), you should convert the rated current of the motor to Per-Unit value with
respect to the base current.

D− Q saturation limit voltage is the maximum phase voltage supplied by the inverter. Generally

it is
Vdc

3 for Space Vector PWM and
Vdc
2 for Sinusoidal PWM, where Vdc is the DC link voltage of the

inverter.

Note You can enter either per unit or SI unit voltage (or current) value in this parameter. For
optimum performance, we recommend that you provide a per unit value.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

 DQ Limiter

1-3

See Also
Discrete PI Controller with anti-windup and reset | ACIM Feed Forward Control | Inverse Park
Transform | MTPA Control Reference | Vector Control Reference

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

Introduced in R2020a

1 Blocks

1-4

PMSM Feed Forward Control
Decouple d-axis and q-axis current to eliminate disturbance
Library: Motor Control Blockset / Controls / Control Reference

Description
The PMSM Feed Forward Control block decouples d-axis and q-axis current controls and generates
the corresponding feed-forward voltage gains to enable field-oriented control of Permanent Magnet
Synchronous Motor (PMSM).

The block accepts feedback values of d-axis and q-axis currents and the mechanical speed of the
rotor.

Equations

If you select Per-Unit (PU) in the Input units parameter, the block converts the inputs to SI units
before performing any computation. After calculating the output, the block converts the values back
to per unit values.

These equations describe the computation of feed-forward gain by the block.

Vd
FF = ωeλd = ωeLdId + ωeλm

Vq
FF = − ωeλq = − ωeLqIq

For detailed set of equations and assumptions that Motor Control Blockset uses for a PMSM, see
“Mathematical Model of PMSM” on page 1-95.

where:

• ωe is the electrical speed corresponding to frequency of stator voltages (Radians/ sec).
• Ld and Lq are the d-axis and q-axis stator winding inductances (Henry).
• Id and Iq are the d-axis and q-axis currents (Amperes).
• λd and λq are the magnetic fluxes along the d- and q-axes (Weber).
• λm is the permanent magnet flux linkage (Weber).

Ports
Input

Id — D-axis current
scalar

Current along the d-axis of the rotating dq reference frame.

 PMSM Feed Forward Control

1-5

Data Types: single | double | fixed point

Iq — Q-axis current
scalar

Current along the q-axis of the rotating dq reference frame.
Data Types: single | double | fixed point

ωm — Mechanical speed of rotor
scalar

Mechanical speed of the rotor.
Data Types: single | double | fixed point

Output

VdFF — D-axis feed-forward voltage gain
scalar

Feed-forward voltage gain along the d-axis of the rotating dq reference frame.
Data Types: single | double | fixed point

VqFF — Q-axis feed-forward voltage gain
scalar

Feed-forward voltage gain along the q-axis of the rotating dq reference frame.
Data Types: single | double | fixed point

Parameters
Number of pole pairs — Number of pole pairs available in motor
4 (default) | scalar

Number of pole pairs available in the motor.

Stator d-axis inductance (H) — D-axis stator winding inductance
0.2e-3 (default) | scalar

Stator winding inductance (in Henry) along the direct-axis of the rotating dq reference frame.

Stator q-axis inductance (H) — Q-axis stator winding inductance
0.2e-3 (default) | scalar

Stator winding inductance (in Henry) along the quadrature-axis of the rotating dq reference frame.

Permanent magnet flux linkage (Wb) — PM flux linkage
6.4e-3 (default) | scalar

Peak permanent magnet flux linkage (in Weber).

Output Saturation (V) — Saturation limit for output values
24/sqrt(3) (default) | scalar

1 Blocks

1-6

Saturation limit (in Volts) for the output voltages VdFF and VqFF.

Input units — Unit of input values
Per-Unit (PU) (default) | SI Units

Unit of the input values.

Base Voltage (V) — Nominal voltage limit
24/sqrt(3) (default) | scalar

Base voltage (in Volts) for per-unit system.

Dependencies

To enable this parameter, set Input units to Per-Unit (PU).

Base Current (A) — Nominal current limit
19.3 (default) | scalar

Base current (in Amperes) for per-unit system.

Dependencies

To enable this parameter, set Input units to Per-Unit (PU).

Base Speed (rpm) — Nominal speed limit
4107 (default) | scalar

Base speed (in rpm) for per-unit system.

Dependencies

To enable this parameter, set Input units to Per-Unit (PU).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
ACIM Feed Forward Control | Park Transform | Speed Measurement | Discrete PI Controller with
anti-windup and reset | DQ Limiter

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

Introduced in R2020a

 PMSM Feed Forward Control

1-7

PMSM Torque Estimator
Estimate electromechanical torque and power
Library: Motor Control Blockset / Controls / Control Reference

Description
The PMSM Torque Estimator block generates electromechanical torque and power estimates to
enable field-oriented control of Permanent Magnet Synchronous Motor (PMSM). The block outputs
the mathematically computed electromechanical torque for constant motor parameters. To measure
an accurate torque value, we recommend that you use a physical sensor.

The block accepts feedback values of d- and q-axis current and mechanical speed as inputs.

Equations

If you select Per-Unit (PU) in the Input units parameter, the block converts the inputs to SI units
before performing any computation. After calculating the output, the block converts the output back
to per unit values.

These equations describe the computation of electromechanical torque and power estimates by the
block.

Te = 3
2p λmIq + Ld− Lq IdIq

Pe = Te ⋅ ωm

For detailed set of equations and assumptions that Motor Control Blockset uses for a PMSM, see
“Mathematical Model of PMSM” on page 1-95.

where:

• Ld and Lq are the d-axis and q-axis stator winding inductances (Henry).
• Id and Iq are the d-axis and q-axis current (Amperes).
• λm is the permanent magnet flux linkage (Weber).
• p is the number of pole pairs available in the motor.
• ωm is the mechanical speed of the rotor (Radians/ sec).

Ports
Input

Id — D-axis current
scalar

1 Blocks

1-8

Current along the d-axis of the rotating dq reference frame.
Data Types: single | double | fixed point

Iq — Q-axis current
scalar

Current along the q-axis of the rotating dq reference frame.
Data Types: single | double | fixed point

ωm — Mechanical speed of rotor
scalar

Mechanical speed of the rotor.
Data Types: single | double | fixed point

Output

Te — Electromechanical torque
scalar

Electromechanical torque of the rotor.
Data Types: single | double | fixed point

Pe — Electromechanical power
scalar

Electromechanical power of the rotor.
Data Types: single | double | fixed point

Parameters
Number of pole pairs — Number of pole pairs available in motor
4 (default) | scalar

Number of pole pairs available in the motor.

Stator d-axis inductance (H) — D-axis stator winding inductance
0.2e-3 (default) | scalar

Stator winding inductance (henry) along the direct-axis of the rotating dq reference frame.

Stator q-axis inductance (H) — Q-axis stator winding inductance
0.2e-3 (default) | scalar

Stator winding inductance (henry) along the quadrature-axis of the rotating dq reference frame.

Permanent magnet flux linkage (Wb) — Permanent magnet flux linkage
6.4e-3 (default) | scalar

Peak permanent magnet flux linkage (weber).

Input units — Unit of input values
Per-Unit (PU) (default) | SI Units

 PMSM Torque Estimator

1-9

Unit of the input values.

Base Voltage (V) — Nominal voltage limit
24/sqrt(3) (default) | scalar

Base voltage (in Volts) for per-unit system.

Dependencies

To enable this parameter, set Input units to Per-Unit (PU).

Base Current (A) — Nominal current limit
19.3 (default) | scalar

Base current (in Amperes) for per-unit system.

Dependencies

To enable this parameter, set Input units to Per-Unit (PU).

Base Speed (rpm) — Nominal speed limit
4107 (default) | scalar

Base speed (in rpm) for per-unit system.

Dependencies

To enable this parameter, set Input units to Per-Unit (PU).

Base torque (Nm) — Nominal torque limit
0.74112 (default) | scalar

Base torque (in Nm) for per-unit system. See “Per-Unit System” page for more details.

This parameter is not configurable and uses a value that is internally computed using other
parameters.

Dependencies

To display this parameter, set Input units to Per-Unit (PU).

Base power (W) — Nominal power limit
401.143 (default) | scalar

Base power (in W) for per-unit system. See “Per-Unit System” page for more details.

This parameter is not configurable and uses a value that is internally computed using other
parameters.

Dependencies

To display this parameter, set Input units to Per-Unit (PU).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

1 Blocks

1-10

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
ACIM Torque Estimator | Park Transform | Speed Measurement | MTPA Control Reference | Vector
Control Reference

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

Introduced in R2020a

 PMSM Torque Estimator

1-11

Position Generator
Generate position ramp of fixed frequency
Library: Motor Control Blockset / Controls / Control Reference

Description
The Position Generator block generates a position ramp signal (with a frequency that is identical to
that of the reference voltage signal) using the position increment value of the reference signal.

We recommend that you use fixed-step discrete solver for this block to enable code generation and
ensure accurate simulation.

Ports
Input

∆θ — Position increment value
scalar

Position increment value of a fixed frequency reference voltage signal (in either per unit, radians, or
degrees). These equations describe how the block computes the position increment:

• Δθ (per unit) = Frequency × Sample Time
• Δθ (radians) = 2π × Frequency × Sample Time
• Δθ (degrees) = 360 × Frequency × Sample Time

Data Types: single | double | fixed point

Reset — External reset signal
scalar

1 Blocks

1-12

External pulse that resets the position ramp output based on the value of the External reset
parameter.

Dependencies

To enable this port, set External reset to either active high resets to zero or active high
resets to initial condition.
Data Types: single | double | fixed point

Output

θe — Reference voltage position
scalar

Position or phase value of the reference voltage signal (in either per unit, radians, or degrees).
Data Types: single | double | fixed point

Parameters
Theta Units — Unit of θ
Per-unit (default) | Radians | Degrees

Unit of the input position increment value and the output reference voltage position.

Initial theta output — Initial value of θe
0 (default) | scalar

Output position ramp value (in either per unit, radians, or degrees) at initial time (0 seconds).

External reset — Output value on reset
none (default) | active high resets to zero | active high resets to initial
condition

Output position ramp value (in either per unit, radians, or degrees) at the time when the block
receives an active high external reset pulse. You can reset the output to either zero or to equal the
value of the Initial theta output parameter.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
ACIM Slip Speed Estimator | Sine-Cosine Lookup | 3-Phase Sine Voltage Generator | Vector Control
Reference

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

 Position Generator

1-13

Introduced in R2020a

1 Blocks

1-14

Derating Function
Compute derating factor
Library: Motor Control Blockset / Controls / Controllers

Description
The Derating Function block generates the derating factor (y) according to the feedback (ffeedback)
and maximum limit (fmax) values of the input reference signal.

The derating factor:

• Remains equal to one when ffeedback lies between positive and negative values of the Derating
threshold. The derating factor varies linearly outside this range according to ffeedback.

• Remains equal to zero when the reference signal lies beyond (positive or negative) fmax.

Therefore, you can use the generated derating factor to derate a control signal after the reference
signal crosses the specified Derating threshold.

This figure shows the block output when you use a sinusoidal wave as ffeedback.

 Derating Function

1-15

Equations

The Derating threshold parameter, x indicates the percentage of peak amplitude for the reference
signal. The Derating threshold is 0.5 in the block output shown, which results in a threshold value
of 2 (for the peak amplitude value of 4 for the sinusoidal reference signal).

x = [0, 1)

This equation describes how the block computes the derating factor (y).

Derating f actor (y) = 1−
f f eedback− xfmax

(1− x)fmax

Ports
Input

fmax — Maximum reference signal limit
scalar

Maximum limit of the reference signal value beyond which the derating factor becomes zero.
Data Types: single | double | fixed point

1 Blocks

1-16

ffeedback — Reference feedback signal
scalar

Reference signal that the block uses to generate the derating factor, which you can then use to derate
a control signal.
Data Types: single | double | fixed point

Output

y — Derating factor
scalar

Derating factor that the block generates based on the feedback and maximum limit values of the
reference signal when the signal exceeds the value of the Derating threshold parameter.
Data Types: single | double | fixed point

Parameters
Derating threshold — Threshold beyond which derating must occur
0.9 (default) | scalar in the range [0,1)

The reference signal value beyond which the block generates the derating factor.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Speed Measurement | MTPA Control Reference | Vector Control Reference | PMSM Torque Estimator

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

Introduced in R2020a

 Derating Function

1-17

Discrete PI Controller with anti-windup and reset
Implement discrete PI controller with anti-windup and reset functionality
Library: Motor Control Blockset / Controls / Controllers

Description
The Discrete PI Controller with anti-windup and reset block performs discrete-time PI controller
computation using the error signal and proportional and integral gain inputs. The error signal is the
difference between the reference signal and the measured feedback. The block outputs a weighted
sum of the input error signal and the integral of the input error signal.

You can tune the Discrete PI Controller coefficients (Kp and Ki) either manually or automatically.
Automatic tuning requires Simulink® Control Design™ software.

The block also supports anti-windup functionality, which makes the block output to comply with the
register size of the processor. You can reset the integrator to the initial condition (y0).

We recommend that you use fixed-step discrete solver for this block to enable code generation and
ensure accurate simulation.

Ports
Input

error — Variation of system output from expected value
scalar

Difference between a reference signal and the system output.
Data Types: single | double | fixed point

Kp — Proportional gain
scalar

Proportional gain value that you can compute either manually or automatically.
Data Types: single | double | fixed point

Ki*Ts — Integral gain pre-multiplied by integrator sample time
scalar

Integral gain input that you can compute either manually or automatically. You must premultiply the
integral gain value by the integrator sample time (Ts) for the block to execute within asynchronous
interrupts.

1 Blocks

1-18

Data Types: single | double | fixed point

Reset — External reset signal
scalar

External pulse that resets the block output to the value of the initial output from the integrator (y0).
Data Types: single | double | fixed point

y0 — Value of initial output from integrator
scalar

Initial value of the integrator or block output after receiving a reset pulse.
Data Types: single | double | fixed point

Output

y — PI controller output
scalar

Control signal that is identical to the reference signal.
Data Types: single | double | fixed point

Parameters
Upper saturation limit — Upper limit for block output
1 (default) | scalar

The block holds the output at the Upper saturation limit whenever the weighted sum of the
proportional and integral actions exceeds this value.

Lower saturation limit — Lower limit for block output
-1 (default) | scalar

The block holds the output at the Lower saturation limit whenever the weighted sum of the
proportional and integral actions goes below this value.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Discrete PI Controller | Park Transform | Speed Measurement | DQ Limiter | ACIM Control Reference
| MTPA Control Reference

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

 Discrete PI Controller with anti-windup and reset

1-19

Introduced in R2020a

1 Blocks

1-20

Discrete PI Controller
Implement discrete PI controller
Library: Motor Control Blockset / Controls / Controllers

Description
The Discrete PI Controller block performs discrete-time PI controller computation using the error
signal and proportional and integral gain inputs. The error signal is the difference between the
reference signal and the measured feedback. The block outputs a weighted sum of the input error
signal and the integral of the input error signal.

You can tune the Discrete PI Controller coefficients (Kp and Ki) either manually or automatically.
Automatic tuning requires Simulink Control Design™ software.

We recommend that you use fixed-step discrete solver for this block to enable code generation and
ensure accurate simulation.

Ports
Input

error — Variation of system output from expected value
scalar

Difference between a reference signal and the system output.
Data Types: single | double | fixed point

Kp — Proportional gain
scalar

Proportional gain value that you can compute either manually or automatically.
Data Types: single | double | fixed point

Ki*Ts — Integral gain pre-multiplied by integrator sample time
scalar

Integral gain input that you can compute either manually or automatically. You must premultiply the
integral gain value by the integrator sample time (Ts) for the block to execute within asynchronous
interrupts.
Data Types: single | double | fixed point

Output

y — PI controller output
scalar

 Discrete PI Controller

1-21

Control signal that is identical to the reference signal.
Data Types: single | double | fixed point

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Discrete PI Controller with anti-windup and reset

Introduced in R2020a

1 Blocks

1-22

3-Phase Sine Voltage Generator
Generate balanced three-phase sinusoidal signals
Library: Motor Control Blockset / Controls / Math Transforms

Description
The 3-Phase Sine Voltage Generator block generates balanced, three-phase sinusoidal signals using
signal amplitude and position inputs.

The block uses the lookup table approach for optimized code-execution. You can specify the number
of lookup table points in the Number of data points for lookup table parameter.

The following image shows a plot of position input and three-phase sinusoidal output signals against
time.

Equations

The following equations describe how the block computes balanced, three-phase sinusoidal signals.

 3-Phase Sine Voltage Generator

1-23

• Va = A × sinωt

• Vb = A × sin ωt − 2π
3

• Vc = A × sin ωt − 4π
3

where:

• A is the reference voltage amplitude (volts).
• ω is the frequency of the reference voltage position input signal (θe) (radians/ sec).
• t is the time (seconds).

Ports
Input

A — Reference voltage amplitude
scalar

Maximum amplitude of the reference voltage signal.
Data Types: single | double | fixed point

θe — Reference voltage position
scalar

Position or phase value of the reference voltage signal.
Data Types: single | double | fixed point

Output

Va — a-axis component of balanced, three-phase voltage
scalar

Balanced, three-phase voltage signal component along the a-axis of the abc reference frame.
Data Types: single | double | fixed point

Vb — b-axis component of balanced, three-phase voltage
scalar

Balanced, three-phase voltage signal component along the b-axis of the abc reference frame.
Data Types: single | double | fixed point

Vc — c-axis component of balanced, three-phase voltage
scalar

Balanced, three-phase voltage signal component along the c-axis of the abc reference frame.
Data Types: single | double | fixed point

1 Blocks

1-24

Parameters
Theta units — Unit of θe
Per-unit (default) | Radians | Degrees

Unit of the reference voltage position that you provide as input.

Number of data points for lookup table — Size of lookup table
1024 (default) | scalar

Size of the lookup table.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Position Generator

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

Introduced in R2020a

 3-Phase Sine Voltage Generator

1-25

atan2
Compute four-quadrant arctangent
Library: Motor Control Blockset / Controls / Math Transforms

Description
The atan2 block performs the four-quadrant arctangent on two real numbers.

Equations

This equation describes how the block computes the four-quadrant arctangent (θ).

Theta = atan2(A, B) =

arctan A
B if B>0,

arctan A
B + π if B<0 and A ≥ 0,

arctan A
B − π if B<0 and A<0,

+ π
2 if B=0 and A>0,

−π
2 if B=0 and A<0,

undef ined if B=0 and A=0.

where:

−π < Theta ≤ π (Radians)

Ports
Input

A — y-coordinate value (real number)
scalar

Real number on the y-axis that you provide as input to the block.
Data Types: single | double | fixed point

B — x-coordinate value (real number)
scalar

Real number on the x-axis that you provide as input to the block.
Data Types: single | double | fixed point

1 Blocks

1-26

Output

θ — Angle represented by arctangent
scalar

Angle represented by arctangent. This is the angle made by a vector from the origin to a specified
point (x,y) with the positive x-axis.
Data Types: single | double | fixed point

The following figure shows the representation of input values A, B, and arctangent on the x-y
coordinate plane.

Parameters
Output unit — Unit of output values
Radians (default) | PerUnit

Unit of the output values.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

 atan2

1-27

Introduced in R2020a

1 Blocks

1-28

Clarke Transform
Implement ab to αβ transformation
Library: Motor Control Blockset / Controls / Math Transforms

Description
The Clarke Transform block computes the Clarke transformation of balanced three-phase components
in the abc reference frame and outputs the balanced two-phase orthogonal components in the
stationary αβ reference frame.

The block accepts two signals out of the three phases (abc), automatically calculates the third signal,
and outputs the corresponding components in the αβ reference frame.

For example, the block accepts a and b input values where the phase-a axis aligns with the α-axis.

• This figure shows the direction of the magnetic axes of the stator windings in the abc reference
frame and the stationary αβ reference frame.

• This figure shows the equivalent α and β components in the stationary αβ reference frame.

 Clarke Transform

1-29

• The time-response of the individual components of equivalent balanced abc and αβ systems.

Equations

The following equation describes the Clarke transform computation:

1 Blocks

1-30

fα
fβ
f0

= 2
3 ×

1 − 1
2 − 1

2

0 3
2 − 3

2
1
2 1

2 1
2

fa
fb
fc

For balanced systems like motors, the zero sequence component calculation is always zero. For
example, the currents of the motor can be represented as,

ia + ib + ic = 0

Therefore, you can use only two current sensors in three-phase motor drives, where you can calculate
the third phase as,

ic = − (ia + ib)

By using these equations, the block implements the Clarke transform as,

fα
fβ

=
1 0
1
3 2

3

fa
fb

where:

• fa, fb, and fc are the balanced three-phase components in the abc reference frame.
• fα and fβ are the balanced two-phase orthogonal components in the stationary αβ reference frame.
• f0 is the zero component in the stationary αβ reference frame.

Ports
Input

a — Phase component
scalar

Component of the three-phase system in the abc reference frame.
Data Types: single | double | fixed point

b — Phase component
scalar

Component of the three-phase system in the abc reference frame.
Data Types: single | double | fixed point

Output

α — Axis component
scalar

Alpha-axis component, α, in the stationary αβ reference frame.
Data Types: single | double | fixed point

 Clarke Transform

1-31

β — Axis component
scalar

Beta-axis component, β, in the stationary αβ reference frame.
Data Types: single | double | fixed point

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Inverse Clarke Transform | Park Transform

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

Introduced in R2020a

1 Blocks

1-32

Inverse Clarke Transform
Implement αβ to abc transformation
Library: Motor Control Blockset / Controls / Math Transforms

Description
The Inverse Clarke Transform block computes the Inverse Clarke transformation of balanced, two-
phase orthogonal components in the stationary αβ reference frame. It outputs the balanced, three-
phase components in the stationary abc reference frame.

The block accepts the α-β axis components as inputs and outputs the corresponding three-phase
signals, where the phase-a axis aligns with the α-axis.

• The α and β input components in the αβ reference frame.

• The direction of the equivalent a, b, and c output components in the abc reference frame and the
αβ reference frame.

 Inverse Clarke Transform

1-33

• The time-response of the individual components of equivalent balanced αβ and abc systems.

Equations

The following equation describes the Inverse Clarke transform computation:

fa
fb
fc

=

1 0 1

− 1
2

3
2 1

− 1
2 −

3
2 1

fα
fβ
f0

For balanced systems like motors, the zero sequence component calculation is always zero:

ia + ib + ic = 0

Therefore, you can use only two current sensors in three-phase motor drives, where you can calculate
the third phase as,

ic = − (ia + ib)

By using these equations, the block implements the Inverse Clarke transform as,

1 Blocks

1-34

fa
fb
fc

=

1 0

−1
2

3
2

−1
2 − 3

2

fα
fβ

where:

• fα and fβ are the balanced two-phase orthogonal components in the stationary αβ reference frame.

• f0 is the zero component in the stationary αβ reference frame.

• fa, fb, and fc are the balanced three-phase components in the abc reference frame.

Ports
Input

α — Axis component
scalar

Alpha-axis component, α, in the stationary αβ reference frame.
Data Types: single | double | fixed point

β — Axis component
scalar

Beta-axis component, β, in the stationary αβ reference frame.
Data Types: single | double | fixed point

Output

a — Phase component
scalar

Component of the three-phase system in the abc reference frame.
Data Types: single | double | fixed point

b — Phase component
scalar

Component of the three-phase system in the abc reference frame.
Data Types: single | double | fixed point

c — Phase component
scalar

Component of the three-phase system in the abc reference frame.
Data Types: single | double | fixed point

 Inverse Clarke Transform

1-35

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Clarke Transform

Introduced in R2020a

1 Blocks

1-36

Inverse Park Transform
Implement dq to αβ transformation
Library: Motor Control Blockset / Controls / Math Transforms

Description
The Inverse Park Transform block computes the inverse Park transformation of the orthogonal direct
and quadrature axes components in the rotating dq reference frame. You can configure the block to
align either the d- or q-axis with the α-axis at time t = 0.

The block accepts the following inputs:

• d-q axes components in the rotating reference frame.
• Sine and cosine values of the corresponding angles of transformation.

It outputs the two-phase orthogonal components in the stationary αβ reference frame.

The figures show a rotating dq reference frame and the α-β axes components in an αβ reference
frame for when:

• The d-axis aligns with the α-axis.

• The q-axis aligns with the α-axis.

 Inverse Park Transform

1-37

In both cases, the angle θ = ωt, where:

• θ is the angle between the α- and d-axes for the d-axis alignment or the angle between the α-
and q-axes for the q-axis alignment. It indicates the angular position of the rotating dq
reference frame with respect to the α-axis.

• ω is the rotational speed of the d-q reference frame.
• t is the time, in seconds, from the initial alignment.

The figures show the time-response of the individual components of the αβ and dq reference frames
when:

• The d-axis aligns with the α-axis.

1 Blocks

1-38

• The q-axis aligns with the α-axis.

 Inverse Park Transform

1-39

Equations

The following equations describe how the block implements inverse Park transformation.

• When the d-axis aligns with the α-axis.

fα
fβ

=
cosθ −sinθ
sinθ cosθ

fd
fq

• When the q-axis aligns with the α-axis.

fα
fβ

=
sinθ cosθ
−cosθ sinθ

fd
fq

where:

• fd and fq are the direct and quadrature axis orthogonal components in the rotating dq reference
frame.

• fα and fβ are the two-phase orthogonal components in the stationary αβ reference frame.

1 Blocks

1-40

Ports
Input

d — Axis component
scalar

Direct axis component, d, in the rotating dq reference frame.
Data Types: single | double | fixed point

q — Axis component
scalar

Quadrature axis component, q, in the rotating dq reference frame.
Data Types: single | double | fixed point

sin θe — Sine value of rotational angle
scalar

Sine value of the angle of transformation, θe. θe is the angle between the rotating reference frame and
the α-axis.
Data Types: single | double | fixed point

cos θe — Cosine value of rotational angle
scalar

Cosine value of the angle of transformation, θe. θe is the angle between the rotating reference frame
and the α-axis.
Data Types: single | double | fixed point

Output

α — Axis component
scalar

Alpha-axis component, α, in the stationary αβ reference frame.
Data Types: single | double | fixed point

β — Axis component
scalar

Beta-axis component, β, in the stationary αβ reference frame.
Data Types: single | double | fixed point

Parameters
Alpha (phase-a) axis alignment — dq reference frame alignment
D-axis (default) | Q-axis

Align either the d- or q-axis of the rotating reference frame to the α-axis of the stationary reference
frame.

 Inverse Park Transform

1-41

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Park Transform | Discrete PI Controller with anti-windup and reset | DQ Limiter | ACIM Feed Forward
Control | Space Vector Generator | Sine-Cosine Lookup | PMSM Feed Forward Control

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

Introduced in R2020a

1 Blocks

1-42

Park Transform
Implement αβ to dq transformation
Library: Motor Control Blockset / Controls / Math Transforms

Description
The Park Transform block computes the Park transformation of two-phase orthogonal components in
a stationary αβ reference frame.

The block accepts the following inputs:

• α-β axes components in the stationary reference frame.
• Sine and cosine values of the corresponding angles of transformation.

It outputs orthogonal direct and quadrature axis components in the rotating dq reference frame. You
can configure the block to align either the d- or the q-axis with the α-axis at time t = 0.

The figures show the α-β axes components in an αβ reference frame and a rotating dq reference
frame for when:

• The d-axis aligns with the α-axis.

• The q-axis aligns with the α-axis.

 Park Transform

1-43

In both cases, the angle θ = ωt, where:

• θ is the angle between the α- and d-axes for the d-axis alignment or the angle between the α-
and q-axes for the q-axis alignment. It indicates the angular position of the rotating dq
reference frame with respect to the α-axis.

• ω is the rotational speed of the d-q reference frame.
• t is the time, in seconds, from the initial alignment.

The figures show the time-response of the individual components of the αβ and dq reference frames
when:

• The d-axis aligns with the α-axis.

1 Blocks

1-44

• The q-axis aligns with the α-axis.

 Park Transform

1-45

Equations

The following equations describe how the block implements Park transformation.

• When the d-axis aligns with the α-axis.

fd
fq

=
cosθ sinθ
−sinθ cosθ

fα
fβ

• When the q-axis aligns with the α-axis.

fd
fq

=
sinθ −cosθ
cosθ sinθ

fα
fβ

where:

• fα and fβ are the two-phase orthogonal components in the stationary αβ reference frame.
• fd and fq are the direct and quadrature axis orthogonal components in the rotating dq reference

frame.

1 Blocks

1-46

Ports
Input

α — Axis component
scalar

Alpha-axis component, α, in the stationary αβ reference frame.
Data Types: single | double | fixed point

β — Axis component
scalar

Beta-axis component, β, in the stationary αβ reference frame.
Data Types: single | double | fixed point

sin θe — Sine value of rotational angle
scalar

Sine value of the angle of transformation, θe. θe is the angle between the rotating reference frame and
the α-axis.
Data Types: single | double | fixed point

cos θe — Cosine value of rotational angle
scalar

Cosine value of the angle of transformation, θe. θe is the angle between the rotating reference frame
and the α-axis.
Data Types: single | double | fixed point

Output

d — Axis component
scalar

Direct axis component, d, in the rotating dq reference frame.
Data Types: single | double | fixed point

q — Axis component
scalar

Quadrature axis component, q, in the rotating dq reference frame.
Data Types: single | double | fixed point

Parameters
Alpha (phase-a) axis alignment — dq reference frame alignment
D-axis (default) | Q-axis

Align either the d- or q-axis of the rotating reference frame to the α-axis of the stationary reference
frame.

 Park Transform

1-47

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Inverse Park Transform | Clarke Transform | Sine-Cosine Lookup | Discrete PI Controller with anti-
windup and reset | ACIM Feed Forward Control | ACIM Torque Estimator | PMSM Feed Forward
Control | PMSM Torque Estimator

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

Introduced in R2020a

1 Blocks

1-48

Sine-Cosine Lookup
Implement sine and cosine functions using lookup table approach
Library: Motor Control Blockset / Controls / Math Transforms

Description
The Sine-Cosine Lookup block implements sine and cosine functions using the specified position or
phase input signal.

The block uses the lookup table approach for optimized code-execution. You can specify the number
of lookup table points in the Number of data points for lookup table parameter.

This figure shows the input position and the generated sine and cosine output signals:

Ports
Input

θe — Reference voltage position
scalar

Position or phase value of the reference voltage signal specified as scalar in either per-unit, radians,
or degrees.
Data Types: single | double | fixed point

Output

sin — Sine voltage waveform
scalar

Sine waveform output with a frequency that is identical to the position or phase signal (θe) frequency.

 Sine-Cosine Lookup

1-49

Data Types: single | double | fixed point

cos — Cosine voltage waveform
scalar

Cosine waveform output with a frequency that is identical to the position or phase signal (θe)
frequency.
Data Types: single | double | fixed point

Parameters
Theta units — Unit of θe
Per-unit (default) | Radians | Degrees

Unit of the input reference voltage position.

Number of data points for lookup table — Size of lookup table array
1024 (default) | scalar

Size of the lookup table array.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Position Generator | Park Transform | Inverse Park Transform | Mechanical to Electrical Position

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

Introduced in R2020a

1 Blocks

1-50

PWM Reference Generator
Generate modulated signals from phase voltages
Library: Motor Control Blockset / Controls / Math Transforms

Description
The PWM Reference Generator block generates modulated voltage signals from the stator phase or
reference voltages.

The block accepts either the phase voltages (Vabc) or the stator reference voltages (Vαβ) described by
the α-β voltage components.

Use this block to perform sinusoidal PWM (SPWM) and space vector modulation (SVM) along with
these discrete pulse-width modulation (DPWM) methods that reduce switching losses:

Note For the following modulation methods the block supports only per-unit (PU) input signals. For
more information about the per-unit system, see “Per-Unit System”.

• 60 DPWM — 60 degree discontinuous PWM
• 60 DPWM (+30 degree shift) — +30 degree shift from 60 DPWM
• 60 DPWM (-30 degree shift) — -30 degree shift from 60 DPWM
• 30 DPWM — 30 degree discontinuous PWM
• 120 DPWM — Positive DC component
• 120 DPWM — Negative DC component

For discontinuous PWM (DPWM), the block clamps the modulation wave to the positive or negative
DC rail for a total of 120 degrees during each fundamental period per phase. During each clamping
interval, the modulation discontinues.

The figure shows the sinusoidal PWM (SPWM) waveform.

 PWM Reference Generator

1-51

The figure shows the space vector modulation (SVM) waveform.

The figure shows a 60-degree DPWM waveform with two 60-degree clamped intervals per
fundamental period.

1 Blocks

1-52

The figure shows a 60-degree DPWM waveform with a positive 30-degree phase shift.

The figure shows a 60-degree DPWM waveform with a negative 30-degree phase shift.

 PWM Reference Generator

1-53

The figure shows a 30-degree DPWM waveform with four 30-degree clamped intervals per
fundamental period.

The figure shows a 120-degree DPWM waveform with positive DC clamping.

1 Blocks

1-54

The figure shows a 120-degree DPWM waveform with negative DC clamping.

Ports
Input

Vα — α-axis stator reference voltage component
scalar

Stator reference voltage component along α-axis of the αβ reference frame.

Dependencies

To enable this port, set Input type to Valphabeta.
Data Types: single | double | fixed point

 PWM Reference Generator

1-55

Vβ — β-axis stator reference voltage component
scalar

Stator reference voltage component along β-axis of the αβ reference frame.

Dependencies

To enable this port, set Input type to Valphabeta.
Data Types: single | double | fixed point

Va — Phase component
scalar

Component of the three-phase system in the abc reference frame.

Dependencies

To enable this port, set Input type to Vabc.
Data Types: single | double | fixed point

Vb — Phase component
scalar

Component of the three-phase system in the abc reference frame.

Dependencies

To enable this port, set Input type to Vabc.
Data Types: single | double | fixed point

Vc — Phase component
scalar

Component of the three-phase system in the abc reference frame.

Dependencies

To enable this port, set Input type to Vabc.
Data Types: single | double | fixed point

Output

Vao — a-axis stator reference voltage component
scalar

Stator reference voltage component along a-axis of the abc reference frame.
Data Types: single | double | fixed point

Vbo — b-axis stator reference voltage component
scalar

Stator reference voltage component along b-axis of the abc reference frame.
Data Types: single | double | fixed point

1 Blocks

1-56

Vco — c-axis stator reference voltage component
scalar

Stator reference voltage component along c-axis of the abc reference frame.
Data Types: single | double | fixed point

Parameters
Input type — Block input type
Valphabeta (default) | Vabc | Degrees

Type of three-phase stator voltage representation that the block uses as input. Select either the abc
or αβ reference frame.

Modulation method — Pulse-width modulation (PWM) methods
SVM: space vector modulation (default) | SPWM: sinusoidal PWM | 60 DPWM — 60 degree
discontinuous PWM | 60 DPWM (+30 degree shift) — +30 degree shift from 60 DPWM |
60 DPWM (-30 degree shift) — -30 degree shift from 60 DPWM | 30 DPWM — 30
degree discontinuous PWM | 120 DPWM — positive DC component | 120 DPWM —
negative DC component

Pulse-width modulation (PWM) method that the block uses to modulate the input stator phase or
reference voltages.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Inverse Park Transform

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

Introduced in R2020a

 PWM Reference Generator

1-57

Protection Relay
Implement protection relay with definite minimum time (DMT) trip characteristics
Library: Motor Control Blockset / Protection and Diagnostics

Description
The Protection Relay block implements a protection relay for the hardware and the motor with
definite minimum time (DMT) trip characteristics using the reference limit, feedback, and reset input
signals. In the event of a fault, the block generates a latched fault signal that you can use to protect
the hardware and the motor. You can reset the fault latch using an external reset signal.

Ports
Input

Imax — Upper limit for current
scalar

Upper limit for current in the feedback loop, so as to provide overcurrent protection. The block
generates a latched fault signal when the current in the feedback loop (Ifb) exceeds this value.
Dependencies

To enable this port, set Select Protection to Overcurrent.
Data Types: single | double | fixed point

Ifb — Actual current in feedback loop
scalar

Actual current in the feedback loop at a given time.
Dependencies

To enable this port, set Select Protection to Overcurrent.
Data Types: single | double | fixed point

⍵m max — Rotor speed limit for overspeed protection
scalar

Speed limit of the rotor (in RPM). The block generates a latched fault signal when the rotor speed (⍵m
fb) exceeds this value.
Dependencies

To enable this port, set Select Protection to Overspeed.
Data Types: single | double | fixed point

1 Blocks

1-58

⍵m fb — Actual rotor speed
scalar

Actual rotor speed at a given time.
Dependencies

To enable this port, set Select Protection to Overspeed.
Data Types: single | double | fixed point

Vmax — Upper voltage limit for overvoltage protection
scalar

Upper limit for voltage across the feedback loop. The block generates a latched fault signal when the
voltage across the feedback loop (Vfb) exceeds this value.
Dependencies

To enable this port, set Select Protection to Overvoltage.
Data Types: single | double | fixed point

Vmin — Lower voltage limit for undervoltage protection
scalar

Lower limit for voltage across the feedback loop. The block generates a latched fault signal when the
voltage across the feedback loop (Vfb) is less than this value.
Dependencies

To enable this port, set Select Protection to Undervoltage.
Data Types: single | double | fixed point

Vfb — Actual voltage across feedback loop
scalar

Actual voltage across the feedback loop at a given time.
Dependencies

To enable this port, set Select Protection to either Overvoltage or Undervoltage.
Data Types: single | double | fixed point

Reset — External reset pulse
scalar

External pulse that resets the fault latch.
Data Types: single | double | fixed point

Output

y — Latched fault signal
scalar

Latched fault signal that the block generates during the overcurrent, overspeed, overvoltage, and
undervoltage conditions to protect the hardware and the motor.

 Protection Relay

1-59

Data Types: single | double | fixed point

Parameters
Select Protection — Type of protection relay
Overcurrent (default) | Overspeed | Overvoltage | Undervoltage

Available protection types to configure block behavior during the overcurrent, overspeed,
overvoltage, and undervoltage conditions.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Introduced in R2020a

1 Blocks

1-60

Hall Speed and Position
Compute speed and estimate position of rotor by using Hall sensors
Library: Motor Control Blockset / Sensor Decoders

Description
The Hall Speed and Position block computes the mechanical speed of the rotor by tracking changes in
the Hall state. The block also estimates the electric position of the rotor by using the direction, Hall
state, and external counter value inputs.

The block executes periodically after a fixed time interval that the controller algorithm defines.

Ports
Input

HallVal — Current Hall sensor output state
scalar

The Hall state at current time. For example, these are the possible valid Hall states (where the MSB
represents the output of the first Hall sensor connected):

• 5 - (101)
• 4 - (100)
• 6 - (110)
• 2 - (010)
• 3 - (011)
• 1 - (001)

Data Types: single | double | fixed point

Cnt — External counter value
scalar

The external counter value that the block uses to determine the time elapsed between the Hall state
change and block execution.
Data Types: single | double | fixed point

SpdCnt — Count at Hall state change
scalar

This value indicates the clock cycles (time) elapsed between two consecutive changes in the Hall
state.

 Hall Speed and Position

1-61

Data Types: single | double | fixed point

Dir — Rotor spin direction during current Hall state
scalar

The direction of the rotor spin (either +1 or –1 indicating positive or negative direction of rotation,
respectively) during the current Hall state.
Data Types: single | double | fixed point

SpdVal — Validity of current and previous Hall states and speed calculation
scalar

The port value indicates Hall state validity. The value zero indicates that the current or previous Hall
state is invalid and that the block cannot calculate speed and position.

The value one indicates that both the current and previous Hall states are valid and that the block
can calculate speed and position.
Data Types: single | double | fixed point

HallChng — Value of Hall state change flag
scalar

The port value indicates Hall state change and block execution status. The value one indicates that
the Hall state changed, but that the block execution is pending. The value zero indicates that the
block has completed executing the last Hall state change.
Data Types: single | double | fixed point

Output

θe — Electrical position of rotor
scalar

The estimated electrical position of the rotor based on the Expected hall sequence in positive
direction parameter and the Direction, HallVal, and CounterValue inputs.

Dependencies

To enable this port, set Block output to either Position or Speed and position.
Data Types: single | double | fixed point

⍵m — Mechanical speed of rotor
scalar

The mechanical speed of the rotor in revolutions per minute. The block calculates this value by
tracking the Hall state changes.

The port returns zero if the SpdVal input is zero.

Dependencies

To enable this port, set Block output to either Speed or Speed and position.
Data Types: single | double | fixed point

1 Blocks

1-62

HallChngRst — Resets Hall state change flag to zero
scalar

The port outputs a value of zero (sets the Hall state change flag to zero) indicating that the block has
successfully executed speed and position computations for the last Hall state change.
Data Types: single | double | fixed point

Parameters
General

Block output — Select output ports
Speed and position (default) | Speed | Position

Select the available block output ports as one of the following values:

• Speed and position
• Speed
• Position

Counter size — Size of external counter register
32 bits (default) | 8 bits | 16 bits

The register size of the external counter. The maximum counter value is 2n‐1, where n = counter size.

Counter clock frequency (Hz) — Clock frequency of external counter
90e6 (default) | scalar

The clock frequency of the external counter.

Discrete step size (s) — Sample time after which block executes again
50e-6 (default) | scalar

The time between two consecutive instances of block execution.

Number of pole pairs — Number of pole pairs available in motor
8 (default) | scalar

Number of pole pairs available in the motor.

Minimum detectable speed (RPM) — Minimum speed that block can detect
20 (default) | scalar

The block does not calculate position for speed below this value.

Speed measurement interval — Interval over which block measures speed
Every 180 Degrees (default) | Every 60 Degrees

Rotor angular displacement that represents the interval at which the SpdCnt port value was
calculated.

Speed unit — Unit of rotor angular speed output
Radians/sec (default) | Degrees/sec | RPM | Per unit

 Hall Speed and Position

1-63

Unit of the angular velocity or mechanical speed (⍵m) output.

Dependencies

To enable this parameter, set Block output to either Speed or Speed and position.

Speed datatype — Data type of rotor angular speed output
single (default) | double | fixdt(1,16,0) | fixdt(1,16,2^0,0) | <data type expression>

Data type of the rotor angular speed output.

Dependencies

To enable this parameter, set Block output to either Speed or Speed and position.

Position

Expected hall sequence in positive direction — Sequence indicating positive
direction
ABC (default) | CBA | Custom sequence

The Hall sensor sequence that represents the positive direction of rotor spin.

Dependencies

To enable this parameter, set Block output to either Position or Speed and position.

Sequence — Custom sequence indicating positive direction
[5,4,6,2,3,1] (default) | scalar

The custom sequence that you can enter to represent rotor spin in the positive direction.

Dependencies

To enable this parameter:

• Set Block output to either Position or Speed and position.
• Set Expected hall sequence in positive direction to Custom sequence.

Order of extrapolation of position — Indicates precision in position computation
1st Order (default) | 2nd Order

The 1st Order option is less accurate in computing position, but quick. The 2nd Order option is
more accurate, but needs more computation time. These equations describe the options:

θ1st Order = θsector + ωt

θ2nd Order = θsector + ωt + 1
2αt2

where:

θ1st Order = Position computed by using 1st order extrapolation.

θ2nd Order = Position computed by using 2nd order extrapolation.

θsector = Sector angle defined by the Hall sensor output.

1 Blocks

1-64

ω = Angular velocity of the rotor.

α = Angular acceleration of the rotor.

t = Time spent in a sector.

Dependencies

To enable this parameter, set Block output to either Position or Speed and position.

Position unit — Unit of angular speed output
Radians (default) | Degrees | Per unit

Unit of angular speed output.

Dependencies

To enable this parameter, set Block output to either Position or Speed and position.

Position datatype — Data type of angular speed output
single (default) | double | fixdt(1,16,0) | fixdt(1,16,2^0,0) | <data type expression>

Data type of angular speed output.

Dependencies

To enable this parameter, set Block output to either Position or Speed and position.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Hall Validity | Mechanical to Electrical Position | Discrete PI Controller with anti-windup and reset

Topics
“Current Sensor ADC Offset and Position Sensor Calibration”
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

Introduced in R2020a

 Hall Speed and Position

1-65

Hall Validity
Compute rotor spin direction and validity of Hall sensor sequence
Library: Motor Control Blockset / Sensor Decoders

Description
The Hall Validity block checks and validates every state of the Hall sensor output sequence. The block
identifies the condition when one or more Hall sensors are in an invalid state.

The block executes when a Hall sensor output state (or Hall state) changes.

Ports
Input

HallVal — Current Hall sensor output state
scalar

The Hall state at current time. These are the possible input values (three-bit numbers where the MSB
represents the output of the first Hall connected):

• 5 - (101)
• 4 - (100)
• 6 - (110)
• 2 - (010)
• 3 - (011)
• 1 - (001)

Note The output port Invalid indicates a bad hall sensor condition.

Data Types: single | double | fixed point

PrevHallVal — Previous Hall sensor output state
scalar

The Hall state prior to the current state.
Data Types: single | double | fixed point

Cnt — External counter value
scalar

1 Blocks

1-66

The external counter value that the block uses to determine the time elapsed between the Hall state
change and block execution.

Note The counter must reset when a Hall state changes.

Data Types: single | double | fixed point

PrevDir — Rotor spin direction during previous Hall state
scalar

The direction of rotor spin (either +1 or -1 indicating positive or negative direction of rotation,
respectively) during the previous Hall state.
Data Types: single | double | fixed point

Output

Invalid — Indicator of Hall state validity
scalar

The indicator of Hall sensor validity during the current or previous Hall state. The block checks the
validity of the sensors by comparing the values of the HallVal and PrevHallVal input port with the
value of the Expected hall sequence in positive direction parameter. The port can output these
values:

• 1 – (001) Indicates that one (or more) sensors are bad.
• 0 – (000) Indicates that all sensors are good.

Data Types: single | double | fixed point

SpdCnt — Count at Hall state change
scalar

The value of the Cnt input port when a Hall state changes.

Note The counter must reset when a Hall state changes. Therefore, this port indicates the number of
counts during the previous Hall state.

Data Types: single | double | fixed point

Dir — Rotor spin direction during current Hall state
scalar

The direction of the rotor spin (either +1 or –1 indicating positive or negative direction of rotation,
respectively) during the current Hall state. The block computes the direction by comparing the values
of the HallVal and PrevHallVal input ports with the value of the Expected hall sequence in
positive direction parameter.
Data Types: single | double | fixed point

SpdVal — Validity of current and previous Hall states and speed calculation
scalar

 Hall Validity

1-67

The port outputs zero when either one or both conditions occur:

• The block detects a bad hall sensor state (in either HallVal or PrevHallVal input port values).
• The block detects a change in the rotor spin direction.

The zero value indicates that you cannot calculate the valid speed for the current Hall state because
the current value of SpdCnt is invalid. The port outputs the value one to indicate that a valid speed
calculation is possible.
Data Types: single | double | fixed point

HallChng — Set flag to one, indicating Hall state change
scalar

The port outputs the value one (and sets the Hall state change flag to one) after the Hall state
changes and the block has completed execution.
Data Types: single | double | fixed point

Parameters
Expected hall sequence in positive direction — Sequence indicating positive
direction
ABC (default) | CBA | Custom sequence

The Hall sensor sequence that represents the positive direction of rotor spin.

Sequence — Custom sequence indicating positive direction
[5,4,6,2,3,1] (default) | scalar

The custom sequence that you can enter to represent rotor spin in the positive direction.
Dependencies

To enable this parameter, set Expected hall sequence in positive direction to Custom sequence.

Counter size — Size of external counter register
16 bits (default) | 8 bits | 32 bits

The register size of the external counter. The maximum counter value is 2n‐1, where n = counter size.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Hall Speed and Position

Topics
“Current Sensor ADC Offset and Position Sensor Calibration”

1 Blocks

1-68

“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

Introduced in R2020a

 Hall Validity

1-69

Mechanical to Electrical Position
Compute electrical position of rotor from mechanical position
Library: Motor Control Blockset / Sensor Decoders

Description
The Mechanical to Electrical Position block computes the electrical position of rotor by using its
mechanical position and mechanical offset value.

Ports
Input

θm — Mechanical position of rotor
scalar

The mechanical position of rotor (as output by the rotor position sensor) in either radians (0 to 2π),
degrees (0 to 360), or per unit (0 to 1).
Data Types: single | double | fixed point

Offset — Mechanical position offset
scalar

The deviation of the rotor's electrical zero from the mechanical zero position. Unit of offset is
identical to the unit of the mechanical position input.
Dependencies

• To enable this port, set Specify offset via to Input port.
• Inputs must be of the same data type.

Data Types: single | double | fixed point

Output

θe — Electrical position of rotor
scalar

The electrical position of the rotor with a range that is identical to that of the mechanical position
input. Data type of the electrical position is identical to that of the input.
Data Types: single | double | fixed point

Parameters
Number of pole pairs — Number of pole pairs available in motor
4 (default) | scalar

1 Blocks

1-70

Number of pole pairs available in the motor.

Input mechanical angle unit — Unit of mechanical position of rotor
Per unit (default) | Radians | Degrees

Unit of the mechanical position of the rotor.

Offset input type — Method to specify offset
Input port (default) | Specify via dialog

The method you want to use to specify the mechanical position offset. Select Input port to enable
and use the input port Offset. Select Specify via dialog to provide the offset value using the
dialog box.

Mechanical offset — Value of mechanical position offset
0 (default) | scalar

The unit of the offset is identical to that of the unit of the mechanical position input.

Dependencies

To enable this parameter, set Specify offset via to Specify via dialog.

Input data type — Data type of input ports
single (default) | double | fixed point

The data type that you want to use for the input ports.

Note The block runs faster, if you select either fixdt(1,16,0) or fixdt(1,16,2^0,0) input data
type and provide fixed point values to the input ports.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Hall Speed and Position | Quadrature Decoder | Position Generator | Discrete PI Controller with anti-
windup and reset | Sine-Cosine Lookup

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

Introduced in R2020a

 Mechanical to Electrical Position

1-71

Quadrature Decoder
Compute position of quadrature encoder
Library: Motor Control Blockset / Sensor Decoders

Description
The Quadrature Decoder block computes the position of the quadrature encoder. The block uses the
current encoder counter value and encoder counter value at the previous index pulse to calculate the
angular position of the quadrature encoder (and the rotor) in either degrees, radians, or per-unit.

This figure shows a quadrature encoder disk with two channels (QEPA and QEPB) and an index pulse
(QEPI):

In this example, the timer driven by the QEP increments by four for each slit:

1 Blocks

1-72

Equations

The block computes the angular position (in counts) of the quadrature encoder as:

When the encoder rotates in the clockwise direction:

• If Idx ≤ Cnt,

Position count = Cnt − Idx
• If Idx > Cnt and the shaft continues to rotate in the clockwise direction,

Position count = Cnt − Idx
• If Idx > Cnt and the shaft starts rotating in the anticlockwise direction,

Position count = Counts per revolution− Idx− Cnt

When the encoder rotates in the anticlockwise direction:

• If Idx ≥ Cnt,

Position count = Counts per revolution− Idx− Cnt
• If Idx < Cnt and the shaft continues to rotate in the anticlockwise direction,

Position count = Counts per revolution− Idx− Cnt
• If Idx < Cnt and the shaft starts rotating in the clockwise direction,

Position count = Cnt − Idx

When you clear the External index count parameter, the Idx pulse resets Cnt to zero, therefore:

Position count = Cnt

 Quadrature Decoder

1-73

where:

• Position count is the angular position of the quadrature encoder in counts.
• Counts per revolution is the number of counts in one rotation cycle of the quadrature encoder.

The block computes the output θm as:

Position = 360 × Position count/ Encoder slits × Encoder counts per slit (in degrees)

Position = 2π × Position count/(Encoder slits × Encoder counts per slit) (in radians)

Position = Cnt/ Encoder slits × Encoder counts per slit (in per-unit)

Ports
Input

Cnt — Quadrature encoder counter value
scalar

Value that the quadrature encoder counter generates with respect to the slit-position. The port only
accepts a scalar unsigned integer based on the Counter size parameter. For example, if you select 8
bits for Counter size, the input data type must be uint8.
Data Types: uint8 | uint16 | uint32

Idx — Quadrature encoder counter value at last index pulse
scalar

Value that the quadrature encoder counter generated with respect to the slit-position at the time of
the last index pulse. The port only accepts a scalar unsigned integer based on the Counter size
parameter. For example, if you select 8 bits for Counter size, the input data type must be uint8.
Dependencies

To enable this port, select the External index count parameter.
Data Types: uint8 | uint16 | uint32

Note The input data types for both Cnt and Idx must be identical.

Output

θm — Angular position of quadrature encoder
scalar

Angular position that the block computes based on the Cnt and Idx inputs.
Data Types: single | double | fixed point

Parameters
Encoder slits — Number of slits per phase
1000 (default) | scalar

1 Blocks

1-74

The number of slits available in each phase of the quadrature encoder.

Encoder counts per slit — Number of counts generated for every slit
4 (default) | 1 | 2

The number of counts that the quadrature encoder generates for every slit. A count indicates a slit
position. For example, select 4 if you want the encoder to generate four counts corresponding to 00,
10, 11, and 01 slit positions or values.

Counter size — Size of quadrature encoder counter
16 bits (default) | 8 bits | 32 bits

Size of the quadrature encoder counter.

External index count — Enable Idx input port
on (default) | off

The block enables the Idx input port only if you select this parameter. The block expects that the Cnt
input port value resets at the time of the Idx pulse.

Position unit — Unit of angular position output
Radians (default) | Degrees | Per unit

Unit of the angular position output.

Position data type — Data type of angular position output
single (default) | double | fixdt(1,16,0) | fixdt(1,16,2^0,0) | <data type expression>

The data type for the angular position output.

Note The Quadrature Decoder block may occasionally display the warning message 'Wrap on
overflow detected.'

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Speed Measurement | Mechanical to Electrical Position

Topics
“Current Sensor ADC Offset and Position Sensor Calibration”
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

Introduced in R2020a

 Quadrature Decoder

1-75

Resolver Decoder
Compute electrical angular position of resolver
Library: Motor Control Blockset / Sensor Decoders

Description
The Resolver Decoder block calculates the electrical angular position of the resolver from the
resolver sine and cosine output signals.

The resolver uses a primary sinusoidal excitation input signal to generate the modulated secondary
sine and cosine waveforms.

You must normalize these waveforms (within the range of [-1,1] and centered at 0) and sample them
to obtain the secondary sine and cosine input signals of the Resolver Decoder block.

The block computes and outputs the resolver position in [0, 2π] radians. The block can also add a
phase delay to the sampled sine and cosine signals with respect to the excitation signal.

1 Blocks

1-76

Note The block inputs should have identical amplitude and data types (either signed fixed or floating
point).

Equations

The block computes the average, peak amplitude values, and the sign of the peak amplitude of a
signal cycle as

 Resolver Decoder

1-77

Åaverage = 1
n∑i = 0

n− 1

(Åi)

Åpeak = Åaverage × π
2

Sign of Peak = Sign of ∑i = phase delay

n
2 − 1 + phase delay

Åi

where:

• Åaverage is the average amplitude value of a signal cycle
• n is the number of samples per excitation cycle

• Åpeak is the peak amplitude value of a signal cycle

The block computes the electrical angular position of the resolver as

θ = atan2
usin_peak
ucos_peak

where:

• usin_peak is the Åpeak of the secondary sine signal
• ucos_peak is the Åpeak of the secondary cosine signal
• θ is the electrical angular position of the resolver

Ports
Input

Sin — Sampled and normalized secondary sine signal
vector

Secondary sine waveform output from the resolver that is sampled and normalized within the range
of [-1, 1] and centered at 0.
Data Types: single | double | fixed point

Cos — Sampled and normalized secondary cosine signal
vector

Secondary cosine waveform output from the resolver that is sampled and normalized within the range
of [-1, 1] and centered at 0.
Data Types: single | double | fixed point

Output

θ — Resolver position
scalar

1 Blocks

1-78

Electrical angular position of the resolver (and the rotor) in [0, 2π] radians.
Data Types: single | double | fixed point

Parameters
Phase delay (electrical radians) — Phase delay for input signals
0.1746 (default) | scalar

The phase delay that the block must add to the Sin and Cos input port signals.

Number of samples per excitation signal — Samples per cycle of input signal
16 (default) | even scalar greater than zero

Number of samples available in one cycle of the Sin and Cos input port signals.

Output data type — Data type of resolver position output
single (default) | double | fixed point

The data type of the resolver position output θ.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Topics
“Monitor Resolver Using Serial Communication”

Introduced in R2020a

 Resolver Decoder

1-79

Software Watchdog Timer
Output true until counter reaches maximum count limit
Library: Motor Control Blockset / Sensor Decoders

Description
The Software Watchdog Timer block increments the counter value until either the block receives a
Restart input pulse, or the count reaches the value of the Maximum count parameter.

On receiving the Restart pulse, the block restarts the counter and starts incrementing the counter
value again when the Restart pulse falls.

The block maintains the true Status output until the counter value remains less than the value of
Maximum count parameter. When the counter reaches Maximum count, the block stops the
counter and turns the Status false.

Ports
Input

Restart — Pulse to restart watchdog timer counter
scalar

The pulse (true value) that restarts the watchdog timer counter. The counter resumes counting when
the pulse falls (false value).
Data Types: single | double | fixed point

Output

Status — Watchdog timer status
scalar

The watchdog timer status indicated as one of the following:

• True indicates that the counter value is less than the value of the Maximum count parameter.
• False indicates that the counter value is equal to the value of the Maximum count parameter and

the block has stopped the counter.

Data Types: single | double | fixed point

Parameters
Maximum count — Maximum limit of watchdog timer value
10 (default) | scalar

1 Blocks

1-80

The maximum limit of the watchdog timer counter value that causes the block to stop the counter and
turn the watchdog timer status to false.

Counter data type — Data type of Status output
uint8 (default) | uint16 | uint32

The data type of the watchdog timer status output.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Introduced in R2020a

 Software Watchdog Timer

1-81

Speed Measurement
Compute speed from rotor angular position
Library: Motor Control Blockset / Sensor Decoders

Description
The Speed Measurement block calculates the angular speed from the angular position of the rotor by
calculating the change in the angular position with respect to time.

Ports
Input

θ — Angular position of rotor
scalar

Angular position of the rotor specified in either radians, degrees, or per-unit.
Data Types: single | double | fixed point

Output

⍵ — Angular speed of rotor
scalar

Angular speed that the block computes based on the angular position input.
Data Types: single | double | fixed point

Parameters
Position unit — Unit of angular position
Radians (default) | Degrees | Per unit

The unit of the angular position θ.

Position scaling datatype — Data type of angular position input
uint32 (default) | uint16 | uint64

The data type of the angular position input θ.

Speed calculation criteria — Method of speed calculation
Maximum application speed (default) | Speed resolution | Time interval for speed
calculation

The speed calculation method used in the block. The selected method determines the range of the
rotor speed that the block can measure.

1 Blocks

1-82

These parameters change values according to the Speed calculation criteria parameter:

Parameter name Maximum application
speed

Speed Resolution Time interval for
speed calculation

Delays for speed
calculation (number
of samples)

299 28 28

Maximum measurable
speed (RPM)

1000 10344.8276 10713.2857

Measurable speed
resolution (RPM)

4.6566e-07 4.9892e-06 4.9892e-06

Discrete step size (s) — Sample time after which block executes again
100e-6 (default) | scalar

The fixed time interval (in seconds) between every two consecutive instances of block execution.

These parameters change values according to the Discrete step size (s) parameter value:

• Delays for speed calculation (number of samples)
• Maximum measurable speed (RPM)
• Measurable speed resolution (RPM)

Maximum application speed (RPM) — Maximum measurable rotor speed
1000 (default) | scalar

The maximum rotor speed (in rotations per minute) that the block can measure.

These parameters change values according to the Maximum application speed (RPM) parameter
value:

• Delays for speed calculation (number of samples)
• Maximum measurable speed (RPM)
• Measurable speed resolution (RPM)

Dependencies

To enable this parameter, set Speed calculation criteria to Maximum application speed.

Speed Resolution (RPM) — Minimum detectable speed
5e-6 (default) | scalar

The minimum value of change in the θ input per unit time that the block can detect.

These parameters change values according to the Speed Resolution (RPM) parameter value:

• Delays for speed calculation (number of samples)
• Maximum measurable speed (RPM)
• Measurable speed resolution (RPM)

Dependencies

To enable this parameter, set Speed calculation criteria to Speed resolution.

 Speed Measurement

1-83

Delays for speed calculation (number of samples) — Number of angular position
samples measured
299 or 28 (default) | scalar

The number of samples of the angular position input that the block measures to compute the average
position value.

These parameters change values according to the Delays for speed calculation (number of
samples) parameter value:

• Maximum measurable speed (RPM)
• Measurable speed resolution (RPM)

Dependencies

To enable this parameter, set Speed calculation criteria to Time interval for speed
calculation.

Maximum measurable speed (RPM) — Maximum measurable speed
1000 or 10344.8276 or 10713.2857 (default) | scalar

The absolute maximum speed that the block can measure.

This parameter is not configurable and uses a value that is internally computed using other
parameters.

Measurable speed resolution (RPM) — Minimum speed resolution used for speed
computation
4.6566e-07 or 4.9892e-06 (default) | scalar

The minimum speed resolution that the block uses for speed computation. It is always less than or
equal to Speed Resolution (RPM).

This parameter is not configurable and uses a value that is internally computed using other
parameters.

Speed unit — Unit of angular speed output
RPM (default) | Degrees/Sec | Radians/Sec | Per unit based on maximum measurable
speed | Per unit based on dialog

Unit of the angular speed output.

Speed data type — Data type of angular speed output
single (default) | double | fixed point

The data type of the angular speed output ⍵.

Note The Speed Measurement block may occasionally display the warning message 'Wrap on
overflow detected.'

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

1 Blocks

1-84

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Quadrature Decoder | Position Generator | Discrete PI Controller with anti-windup and reset | ACIM
Feed Forward Control | ACIM Torque Estimator | PMSM Feed Forward Control | PMSM Torque
Estimator

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

Introduced in R2020a

 Speed Measurement

1-85

Sliding Mode Observer
Compute electrical position and mechanical speed of rotor
Library: mcbpositiondecoderlib / Archive

Description
The Sliding Mode Observer block computes the electrical position and mechanical speed of a PMSM
by using the per unit voltage and current values along the α- and β-axes of the stationary αβ
reference frame.

Equations

These equations describe the computation of the electrical position and mechanical speed by the
block.

diαβ
dt = Φiαβ + ΓVαβ− Γeαβ

iαβ = iα iβ
T

Vαβ = Vα Vβ
T

eαβ = eα eβ
T =

−ψωesinθe

ψωecosθe

Φ =
− R

L 0

0 − R
L

Γ =
1
L 0

0 1
L

These equations describe the discrete-time sliding mode observer operation by using per-unit values:

i αβ(k + 1)P . U = Ai αβ(k)P . U +
Vrated
Irated

B(vαβ(k)P . U − ϑαβ(k)P . U)

ϑαβ(k + 1)P . U = ϑαβ(k)P . U + 2πf0 × (Ζ(Irated(i αβ(k)P . U − iαβ(k)P . U))− ϑαβ(k)P . U)

A = eΦTs

1 Blocks

1-86

B =∫
0

Ts

eΦτdτ

f0 =
F0
Fs

Fs = 1
Ts

where:

• eα , iα are the stator back EMF and current for the α axis.
• eβ , iβ are the stator back EMF and current for the β axis.
• vα, vβ are the stator supply voltages.
• R is the stator resistance.
• L is the stator inductance.
• ψ is the flux linkage due to permanent magnet.
• ωe is the electrical angular velocity.
• θe is the electrical position of the rotor.
• t is the time.
• Ts is the sampling period.
• k is the sample count.
• Vrated is the nominal voltage corresponding to 1 per-unit.
• Irated is the nominal current corresponding to 1 per-unit.
• Z is the attraction function.

 Sliding Mode Observer

1-87

• f0 is the cut-off frequency of the filter in cycles per sample.

• F0 is the cut-off frequency in cycles per second.

• Fs is the sample frequency in samples per second.

• ϑαβ(k) is the estimated back EMF.

Tuning

Use the Current observer gain and Sliding surface limit parameters to tune the block.

• To improve stability, increase the Sliding surface limit or reduce the Current observer gain.
• To reduce distortion, decrease the Current observer gain or increase the Sliding surface limit.

Ports
Input

Vα — α-axis voltage
scalar

Per-unit voltage component along the α-axis of the stationary αβ reference frame.
Data Types: single | double | fixed point

1 Blocks

1-88

Vβ — β-axis voltage
scalar

Per-unit voltage component along the β-axis of the stationary αβ reference frame.
Data Types: single | double | fixed point

Iα — α-axis current
scalar

Per-unit current component along the α-axis of the stationary αβ reference frame.
Data Types: single | double | fixed point

Iβ — β-axis current
scalar

Per-unit current component along the β-axis of the stationary αβ reference frame.
Data Types: single | double | fixed point

Rst — Reset the block
scalar

The pulse (true value) that resets and restarts the processing of the block algorithm.
Data Types: single | double | fixed point

Output

θe — Electrical position of PMSM
scalar

The estimated electrical position of the rotor.
Data Types: single | double | fixed point

⍵m — Mechanical speed of PMSM
scalar

The estimated mechanical speed of the rotor.
Data Types: single | double | fixed point

Parameters
Observer parameters

Current observer gain — Sliding mode observer gain for current
1.1 (default) | scalar

The attraction function gain.

Sliding surface limit — Maximum limit of sliding surface of SMO
0.15 (default) | scalar

The boundary layer limit of the attraction function's domain.

 Sliding Mode Observer

1-89

Position unit — Unit of position output
Radians (default) | Degrees | Per unit

Unit of the position output.

Position data type — Data type of position output
single (default) | double | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) | <data type
expression>

Data type of the position output.

Speed unit — Unit of speed output
RPM (default) | Degrees/sec | Radians/sec | Per unit

Unit of the speed output.

Speed data type — Data type of speed output
single (default) | double | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) | <data type
expression>

Data type of the speed output.

Discrete step size (s) — Sample time after which block executes again
50e-6 (default) | scalar

The fixed time interval (in seconds) between every two consecutive instances of block execution.

Motor parameters

Stator resistance (ohm) — Resistance
0.4836 (default) | scalar

Stator phase winding resistance (in ohm).

Stator inductance (H) — Inductance
1e-3 (default) | scalar

Stator phase winding inductance (in Henry).

Maximum application speed (RPM) — Maximum supported speed value
6000 (default) | scalar

Maximum value of speed (in RPM) that the block can support. For a speed beyond this value, the
block generates incorrect outputs.

Number of pole pairs — Number of pole pairs available in motor
4 (default) | scalar

Number of pole pairs available in the motor.

Base voltage — Nominal voltage corresponding to one per unit
68 (default) | scalar

The maximum phase voltage applied to PMSM. For details, see “Per-Unit System”.

1 Blocks

1-90

Base current — Nominal current corresponding to one per unit
10 (default) | scalar

The maximum measurable current supplied to PMSM. For details, see “Per-Unit System”.

Note The Sliding Mode Observer block may occasionally display the warning message 'Wrap on
overflow detected.'

References
[1] Y. Kung, N. V. Quynh, C. Huang and L. Huang, "Design and simulation of adaptive speed control

for SMO-based sensorless PMSM drive," 2012 4th International Conference on Intelligent and
Advanced Systems (ICIAS2012), Kuala Lumpur, 2012, pp. 439-444 (doi: 10.1109/
ICIAS.2012.6306234)

[2] Zhang Yan and V. Utkin, "Sliding mode observers for electric machines-an overview," IEEE 2002
28th Annual Conference of the Industrial Electronics Society. IECON 02, Sevilla, 2002, pp.
1842-1847 vol.3. (doi: 10.1109/IECON.2002.1185251)

[3] T. Bernardes, V. F. Montagner, H. A. Gründling and H. Pinheiro, "Discrete-Time Sliding Mode
Observer for Sensorless Vector Control of Permanent Magnet Synchronous Machine," in IEEE
Transactions on Industrial Electronics, vol. 61, no. 4, pp. 1679-1691, April 2014 (doi: 10.1109/
TIE.2013.2267700)

[4] Z. Guo and S. K. Panda, "Design of a sliding mode observer for sensorless control of SPMSM
operating at medium and high speeds," 2015 IEEE Symposium on Sensorless Control for
Electrical Drives (SLED), Sydney, NSW, 2015, pp. 1-6. (doi: 10.1109/SLED.2015.7339255)

See Also
Flux Observer | Clarke Transform | Inverse Park Transform | Sine-Cosine Lookup | Discrete PI
Controller with anti-windup and reset

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

Introduced in R2020a

 Sliding Mode Observer

1-91

IIR Filter
Implement infinite impulse response (IIR) filter
Library: Motor Control Blockset / Signal Management

Description
The IIR Filter block implements a discrete first-order infinite impulse response (IIR) filter on the
specified input signal. The block supports fixed-point and floating-point data types. The block is also
optimized for code generation.

We recommend that you use fixed-step discrete solver for this block to enable code generation and
ensure accurate simulation.

Equations

You can configure the IIR filter by using the filter coefficient (a) block parameter for a given cutoff
frequency (fc).

This equation describes computation of the filter coefficient from the cutoff frequency:

a =
2πTsfc

2πTsfc + 1

Alternatively, the block also computes the theoretical cutoff frequency for the given sample time
using a filter coefficient:

fc = a
(1− a) ⋅ 2π ⋅ Ts

Use the Filter type parameter to configure the block either as a low-pass or high-pass filter.

Low-pass filter:

y k = a ⋅ xk + (1− a) ⋅ yk− 1

High-pass filter:

y k = (1− a) ⋅ xk− (1− a) ⋅ xk− 1 + (1− a) ⋅ yk

where:

• fc is the cutoff frequency of the IIR filter.
• a is the filter coefficient in the range (0, 1].
• y k is the filtered output value at time k.
• yk− 1 is the filtered output value at time k− 1.

1 Blocks

1-92

• xk is the sampled input value at time k.
• xk− 1 is the filtered output value at time k− 1.
• Ts is the sample time of the IIR Filter block.

Ports
Input

x — Sampled input signal
scalar

Sampled values of the raw input signal in the time domain.
Data Types: single | double | fixed point

Output

y — Filtered output signal
scalar

Filtered output signal returned by the IIR Filter block in the time domain.
Data Types: single | double | fixed point

Parameters
Filter type — IIR filter type
Low-pass (default) | High-pass

Type of the IIR filter.

Filter co-efficient — Filter coefficient of IIR filter
0.01 (default) | scalar in the range (0,1]

Filter coefficient of the IIR filter. The data type of this parameter is the same as that of the input
signal. We suggest that you check the precision of the parameter value in this data type.

Display cutoff frequency — Display the cutoff frequency parameters
off (default) | on

Select this parameter for the block to display the Discrete step size (s) and Theoretical cutoff
frequency (Hz) parameters.

Discrete step size (s) — Step size of discrete-time filter
50e-6 (default) | scalar

Step size of the discrete-time computation (in seconds) used by the IIR filter.

Dependencies

To display this parameter, select the Display cutoff frequency parameter.

Theoretical cutoff frequency (Hz) — Theoretical cutoff frequency of IIR filter
32.1525 | scalar

 IIR Filter

1-93

Theoretical cutoff frequency (in Hertz) of the IIR filter. This parameter is not configurable.

Dependencies

To display this parameter, select the Display cutoff frequency parameter.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Introduced in R2020a

1 Blocks

1-94

MTPA Control Reference
Compute reference currents for Maximum Torque Per Ampere (MTPA) and field-weakening operation
Library: Motor Control Blockset / Controls / Control Reference

Description
The MTPA Control Reference block computes the d-axis and q-axis reference current values for
maximum torque per ampere (MTPA) and field-weakening operations. The computed reference
current values results in efficient output for the permanent magnet synchronous motor (PMSM).

The block accepts the reference torque and feedback mechanical speed and outputs the
corresponding d- and q-axes reference current values for MTPA and field-weakening operations.

The block computes the reference current values by solving mathematical relationships. The
calculations use SI unit system. When working with the Per-Unit (PU) system, the block converts PU
input signals to SI units to perform computations, and converts them back to PU values at the output.

These equations describe the computation of reference d-axis and q-axis current values by the block:

Mathematical Model of PMSM

These model equations describe dynamics of PMSM in the rotor flux reference frame:

vd = idRs +
dλd
dt − ωeLqiq

vq = iqRs +
dλq
dt + ωeLdid + ωeλpm

λd = Ldid + λpm

λq = Lqiq

Te = 3
2p λpmiq + Ld− Lq idiq

Te− TL = J
dωm

dt + Bωm

where:

• vd is the d-axis voltage (Volts).
• vq is the q-axis voltage (Volts).
• id is the d-axis current (Amperes).
• iq is the q-axis current (Amperes).
• Rs is the stator phase winding resistance (Ohms).

 MTPA Control Reference

1-95

• λpm is the permanent magnet flux linkage (Weber).
• λd is the d-axis flux linkage (Weber).
• λq is the q-axis flux linkage (Weber).
• ωe is the electrical speed corresponding to frequency of stator voltages (Radians/ sec).
• ωm is the rotor mechanical speed (Radians/ sec).
• Ld is the d-axis winding inductance (Henry).
• Lq is the q-axis winding inductance (Henry).
• Te is the electromechanical torque produced by the PMSM (Nm).
• TL is the load torque (Nm).
• p is the number of motor pole pairs.
• J is the inertia coefficient (kg-m2).
• B is the friction coefficient (kg-m2/ sec).

Base Speed

Base speed is the maximum motor speed at the rated voltage and rated load, outside the field-
weakening region. These equations describe the computation of the motor base speed.

The inverter voltage constraint is defined by computing the d-axis and q-axis voltages:

vdo = − ωeLqiq

vqo = ωe Ldid + λpm

vmax =
vdc

3 − Rsimax ≥ vdo
2 + vqo

2

The current limit circle defines the current constraint which can be considered as:

imax
2 = id

2 + iq2

In the preceding equation, id is zero for surface PMSMs. For interior PMSMs, values of id and iq
corresponding to MTPA are considered.

Using the preceding relationships, we can compute the base speed as:

ωbase = 1
p ⋅

 vmax

Lqiq
2 + Ldid + λpm

2

where:

• ωe is the electrical speed corresponding to frequency of stator voltages (Radians/ sec).
• ωbase is the mechanical base speed of the motor (Radians/ sec).
• id is the d-axis current (Amperes).
• iq is the q-axis current (Amperes).
• vdo is the d-axis voltage when id is zero (Volts).

1 Blocks

1-96

• vqo is the q-axis voltage when iq is zero (Volts).
• Ld is the d-axis winding inductance (Henry).
• Lq is the q-axis winding inductance (Henry).
• Rs is the stator phase winding resistance (Ohms).
• λpm is the permanent magnet flux linkage (Weber).
• vd is the d-axis voltage (Volts).
• vq is the q-axis voltage (Volts).
• vmax is the maximum fundamental line to neutral voltage (peak) supplied to the motor (Volts).
• vdc is the dc voltage supplied to the inverter (Volts).
• imax is the maximum phase current (peak) of the motor (Amperes).
• p is the number of motor pole pairs.

Surface PMSM

For a surface PMSM, you can achieve maximum torque by using zero d-axis current when the motor
is below the base speed. For field-weakening operation, the reference d-axis current is computed by
constant-voltage-constant-power control (CVCP) algorithm defined by these equations:

If ωm ≤ ωbase:

• id_mtpa = 0
•

iq_mtpa = Tref

3
2 ⋅ p ⋅ λpm

• id_sat = id_mtpa = 0
• iq_sat = sat(iq_mtpa, imax)

If ωm > ωbase:

• id_ fw =
(ωe_base− ωe)λpm

ωeLd

• id_sat = max(id_ fw, − imax)
•

iq_ fw = Tref
3
2 ⋅ p ⋅ λpm

• iq_lim = imax
2 − id_sat

2

• iq_sat = sat(iq_ fw, iq lim)

The saturation function used to compute iq_sat is described below:

If iq_ fw < − iq_lim,

iq_sat = − iq_lim

If iq_ fw > iq_lim,

 MTPA Control Reference

1-97

iq_sat = iq_lim

If − iq_lim ≤ iq_ fw ≥ iq_lim,

iq_sat = iq_ fw

The block outputs the following values:

Id
ref = id_sat

Iqref = iq_sat

where:

• ωe is the electrical speed corresponding to frequency of stator voltages (Radians/ sec).
• ωm is the rotor mechanical speed (Radians/ sec).
• ωbase is the mechanical base speed of the motor (Radians/ sec).
• ωe_base is the electrical base speed of the motor (Radians/ sec).
• id_mtpa is the d-axis phase current corresponding to MTPA (Amperes).
• iq_mtpa is the q-axis phase current corresponding to MTPA (Amperes).
• Tref is the reference torque (Nm).
• p is the number of motor pole pairs.
• λpm is the permanent magnet flux linkage (Weber).
• id_ fw is the d-axis field weakening current (Amperes).
• iq_ fw is the q-axis field weakening current (Amperes).
• Ld is the d-axis winding inductance (Henry).
• imax is the maximum phase current (peak) of the motor (Amperes).
• id_sat is the d-axis saturation current (Amperes).
• iq_sat is the q-axis saturation current (Amperes).
• Id

ref is the d-axis current corresponding to the reference torque and reference speed (Amperes).

• Iqref is the q-axis current corresponding to the reference torque and reference speed (Amperes).

Interior PMSM

For an interior PMSM, you can achieve maximum torque by computing the d-axis and q-axis
reference currents from the torque equation. For field-weakening operation, the reference d-axis
current is computed by voltage and current limited maximum torque control (VCLMT) algorithm.

The reference currents for MTPA and field weakening operations are defined by these equations:

im_ref = 2 ⋅ Tref

3 ⋅ p ⋅ λpm

im = max(im_ref , imax)

1 Blocks

1-98

id_mtpa =
λpm

4 Lq− Ld
−

λpm
2

16 Lq− Ld
2 +

im
2

2

iq_mtpa = im2 − id_mtpa
2

vdo = − ωeLqiq

vqo = ωe Ldid + λpm

vdo
2 + vqo

2 = vmax
2

Lqiq
2 + Ldid + λpm

2 ≤
vmax2

ωe2

iq = imax
2 − id2

Ld
2− Lq

2 id2 + 2λpmLdid + λpm
2 + Lq

2imax
2 −

vmax2

ωe2
= 0

id_ fw =
−λpmLd + λpmLd

2− Ld
2− Lq

2 λpm
2 + Lq

2imax
2 −

vmax2

ωe2

Ld
2− Lq

2

iq_ fw = imax
2 − id_ fw

2

If ωm ≤ ωbase,

Id
ref = id_mtpa

Iqref = iq_mtpa

If ωm > ωbase,

Id
ref = max(id_ fw, − imax)

iq_ fw = imax
2 − id_ fw

2

If iq_ fw < im,

Iqref = iq_ fw

If iq_ fw ≥ im,

Iqref = im

For negative reference torque values, the sign of im and Iqref are updated and equations are modified
accordingly.

 MTPA Control Reference

1-99

where:

• im_ref is the estimated maximum current to produce the reference torque (Amperes).
• im is the saturated value of estimated maximum current (Amperes).
• id_max is the maximum d-axis phase current (peak) (Amperes).
• iq_max is the maximum q-axis phase current (peak) (Amperes).
• Tref is the reference torque (Nm).
• Id

ref is the d-axis current component corresponding to the reference torque and reference speed
(Amperes).

• Iqref is the q-axis current component corresponding to the reference torque and reference speed
(Amperes).

• p is the number of motor pole pairs.
• λpm is the permanent magnet flux linkage (Weber).
• id_mtpa is the d-axis phase current corresponding to MTPA (Amperes).
• iq_mtpa is the q-axis phase current corresponding to MTPA (Amperes).
• Ld is the d-axis winding inductance (Henry).
• Lq is the q-axis winding inductance (Henry).
• imax is the maximum phase current (peak) of the motor (Amperes).
• vmax is the maximum fundamental line to neutral voltage (peak) supplied to the motor (Volts).
• vdo is the d-axis voltage when id is zero (Volts).
• vqo is the q-axis voltage when iq is zero (Volts).
• ωe is the electrical speed corresponding to frequency of stator voltages (Radians/ sec).
• id is the d-axis current (Amperes).
• iq is the q-axis current (Amperes).
• id_ fw is the d-axis field weakening current (Amperes).
• iq_ fw is the q-axis field weakening current (Amperes).
• ωbase is the mechanical base speed of the motor (Radians/ sec).

Ports
Input

Tref — Reference torque value
scalar

Reference torque input value for which the block computes the reference current.
Data Types: single | double | fixed point

⍵m — Mechanical speed
scalar

1 Blocks

1-100

Reference mechanical speed value for which the block computes the reference current.
Data Types: single | double | fixed point

Output

Idref — Reference d-axis current
scalar

Reference d-axis phase current that can efficiently generate the input torque and speed values.
Data Types: single | double | fixed point

Iqref — Reference q-axis current
scalar

Reference q-axis phase current that can efficiently generate the input torque and speed values.
Data Types: single | double | fixed point

Parameters
Type of motor — Type of PMSM
Interior PMSM (default) | Surface PMSM

Type of PMSM based on the location of the permanent magnets.

Number of pole pairs — Number of available pole pairs
4 (default) | scalar

Number of pole pairs available in the motor.

Stator resistance per phase (Ohm) — Resistance of stator phase winding (ohms)
0.36 (default) | scalar

Resistance of the stator phase winding (ohms).

Dependencies

To enable this parameter, set Type of motor to Interior PMSM.

Stator d-axis inductance (H) — d-axis stator winding inductance
0.2e-3 (default) | scalar

Stator winding inductance (henry) along the d-axis of the rotating dq reference frame.

Stator q-axis inductance (H) — q-axis stator winding inductance
0.4e-3 (default) | scalar

Stator winding inductance (henry) along the q-axis of the rotating dq reference frame.

Dependencies

To enable this parameter, set Type of motor to Interior PMSM.

Permanent magnet flux linkage (Wb) — Magnetic flux linkage of permanent magnets
6.4e-3 (default) | scalar

 MTPA Control Reference

1-101

Magnetic flux linkage between the stator windings and permanent magnets on the rotor (weber).

Max current (A) — Maximum phase current limit for motor (amperes)
7.1 (default) | scalar

Maximum phase current limit for the motor (amperes).

DC voltage (V) — DC bus voltage (volts)
24 (default) | scalar

DC bus voltage (volts)

Dependencies

To enable this parameter, set Type of motor to Interior PMSM.

Input signal units — Unit of block input values
Per-Unit (PU) (default) | SI Units

Unit of the block input values.

Base speed (rpm) — Base speed of motor (rpm)
4107 (default) | scalar

Speed of the motor at the rated voltage and rated current outside the field weakening region.

Base current (A) — Base current for per-unit conversion (amperes)
19.3 (default) | scalar

Current corresponding to 1 per-unit. We recommend that you use the maximum current detected by
an Analog to Digital Converter (ADC) as the base current.

Dependencies

To enable this parameter, set Input signal units to Per-Unit (PU).

Base torque (Nm) — Base torque for per-unit conversion (Nm)
0.74112 (default) | scalar

Torque corresponding to 1 per-unit. See “Per-Unit System” page for more details.

This parameter is not configurable and uses a value that is internally computed using other
parameters.

Dependencies

To display this parameter, set Input signal units to Per-Unit (PU).

References
[1] B. Bose, Modern Power Electronics and AC Drives. Prentice Hall, 2001. ISBN-0-13-016743-6.

[2] Morimoto, Shigeo, Masayuka Sanada, and Yoji Takeda. "Wide-speed operation of interior
permanent magnet synchronous motors with high-performance current regulator." IEEE
Transactions on Industry Applications, Vol. 30, Issue 4, July/August 1994, pp. 920-926.

1 Blocks

1-102

[3] Li, Muyang. "Flux-Weakening Control for Permanent-Magnet Synchronous Motors Based on Z-
Source Inverters." Master's Thesis, Marquette University, e-Publications@Marquette, Fall
2014.

[4] Briz, Fernando, Michael W. Degner, and Robert D. Lorenz. "Analysis and design of current
regulators using complex vectors." IEEE Transactions on Industry Applications, Vol. 36, Issue
3, May/June 2000, pp. 817-825.

[5] Lorenz, Robert D., Thomas Lipo, and Donald W. Novotny. "Motion control with induction motors."
Proceedings of the IEEE, Vol. 82, Issue 8, August 1994, pp. 1215-1240.

[6] Briz, Fernando, et al. "Current and flux regulation in field-weakening operation [of induction
motors]." IEEE Transactions on Industry Applications, Vol. 37, Issue 1, Jan/Feb 2001, pp.
42-50.

[7] TI Application Note, "Sensorless-FOC With Flux-Weakening and MTPA for IPMSM Motor Drives."

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Discrete PI Controller with anti-windup and reset

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

Introduced in R2020a

 MTPA Control Reference

1-103

Vector Control Reference
Compute d and q axis components of reference vector
Library: Motor Control Blockset / Controls / Control Reference

Description
The Vector Control Reference block calculates the d-axis and q-axis components of the reference
voltage, current, or flux vector that you provide as an input to the block.

The block accepts magnitude and position of the reference vector as inputs. The block outputs the
reference vector components along the direct and quadrature axes of the rotating dq reference
frame.

Equations

The block uses these equations to compute the d-axis and q-axis vector component outputs.

dref = magref × cosθe

qref = magref × sinθe

where:

• dref is the d-axis component of the reference vector.
• qref is the q-axis component of the reference vector.
• magref is the magnitude of the reference vector.
• θe is the electrical position of the reference vector.

Ports
Input

magref — Magnitude of reference vector
scalar

Magnitude of the reference voltage, current, or flux vector that you provide as an input to the block.
Data Types: single | double | fixed point

θe — Electrical position of reference vector
scalar

Electrical position of the reference voltage, current, or flux vector that you provide as an input to the
block.

1 Blocks

1-104

Data Types: single | double | fixed point

Output

dref — d-axis component of reference vector
scalar

Reference voltage, current, or flux vector component along the direct axis of the rotating dq
reference frame.
Data Types: single | double | fixed point

qref — q-axis component of reference vector
scalar

Reference voltage, current, or flux vector component along the quadrature axis of the rotating dq
reference frame.
Data Types: single | double | fixed point

Parameters
Alpha (phase-a) axis alignment — dq reference frame alignment
D-axis (default) | Q-axis

Align either the d- or q-axis of the rotating reference frame to the α-axis of the stationary reference
frame.

Theta units — Unit of input position value
Per-unit (default) | Radians | Degrees

Unit of the input electrical position of the reference voltage, current, or flux vector.

Number of data points for trigonometric lookup table — Size of lookup table array
1024 (default) | scalar

Size of the lookup table array.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Speed Measurement | MTPA Control Reference

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

 Vector Control Reference

1-105

Introduced in R2020a

1 Blocks

1-106

Average-Value Inverter
Compute three-phase AC voltage from inverter DC voltage
Library: Motor Control Blockset / Electrical Systems / Inverters

Description
The Average-Value Inverter block models an average-value and full-wave inverter. It computes the
three-phase AC voltage output from inverter DC voltage by using the duty cycle information.

Equations

These equations describe how the block computes the three-phase AC voltage.

D0 =
(Da + Db + Dc)

3

Va = Vdc × (Da− D0)

Vb = Vdc × (Db− D0)

Vc = Vdc × (Dc− D0)

where:

• Da, Db, and Dc are the modulation indices ranging between 0 and 1.
• Vdc is the DC bus voltage of the inverter (Volts).
• Va, Vb, and Vc are the output three-phase voltages (Volts).

Ports
Input

Dabc — Duty cycle for three-phase voltage
scalar

Three-phase modulation indices in the range [0,1] for generating voltages that run the motor.
Data Types: single | double | fixed point

Vdc — Inverter DC voltage
scalar

DC bus voltage input to the inverter.
Data Types: single | double | fixed point | uint8 | uint16 | uint32

 Average-Value Inverter

1-107

Output

Vabc — Three-phase voltage output
scalar

Three-phase voltage (Volts) corresponding to the input duty cycle that runs the motor.
Data Types: single | double | fixed point

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Space Vector Generator | Induction Motor | Interior PMSM | Surface Mount PMSM

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

Introduced in R2020a

1 Blocks

1-108

Host Serial Receive
Configure host-side serial communications interface to receive data from serial port
Library: Motor Control Blockset / Protection and Diagnostics

Description
The Host Serial Receive block specifies the configuration of the data that it receives from the target
hardware.

The data package that the block receives is limited to 16 bytes of ASCII characters, including
package headers and terminators. Calculate the size of a package by including the package header, or
terminator, or both, and the data size. This table shows the number of bytes in each data type.

Data Type Byte Count
single 4 bytes
int8 and uint8 1 byte
int16 and uint16 2 bytes
int32 and uint32 4 bytes

For example, if your data package has a package header 'S' (1 byte) and package terminator 'E' (1
byte), that leaves 14 bytes for the actual data. If your data is of type int8, there is space in the data
package for 14 int8s. If your data is of type uint16, there is space in the data package for 7
uint16s. If your data is of type int32, there is space in the data package for only 3 int32s, with 2
bytes left over. Even though you could fit two int8s or one uint16 in the remaining space, you
should not, because you cannot mix data types in the same package.

The number of data types that can fit into a data package determine the data size. In the preceding
example, the data size is 14 for int8 and 7 for uint16. When the data size exceeds 16 bytes,
unexpected behavior, including run-time errors, are likely to occur.

Ports
Output

data — Port to output received data
scalar

A first in, first out (FIFO) buffer receives the data. At every time step, the data port outputs the
requested values from the buffer.
Data Types: single | int8 | uint8 | int16 | uint16 | int32 | uint32

status — Transaction status
scalar

 Host Serial Receive

1-109

The status of the transaction. The status can be one of the following values:

• 0 — No errors
• 1 — A timeout occurred when the block was waiting to receive data
• 2 — There is an error in the received data (checksum error)
• 3 — SCI parity error flag — Occurs when a character is received with a mismatch
• 4 — SCI framing error flag — Occurs when an expected stop bit is not found

Dependencies

To enable this port, select the Output receiving status parameter.
Data Types: uint16

Parameters
Serial Connection — Serial port used for receiving data
Serial 1 (default) | Serial 2 | Serial 3 | Serial 4

Specify a serial port to receive communication from the target hardware. Select an available serial
port from the list. You can configure the selected port using the Host Serial Setup block. If you do not
configure a serial port, the block prompts you to do so. Each Host Serial Receive block must have a
configured serial port. If you use multiple ports in your simulation, you must configure each port
separately.

Additional package header — Package header data
'S' (default) | scalar

Specifies the data located at the front of the received data package, which is not part of the data
being received, and generally indicates start of data. The additional package header must be an
ASCII value. You can use a text value or a numeric value in the range (0–255). You must put single
quotes around the text that you enter in this field, but the quotes are not received and they are not
included in the total byte count.

Additional package terminator — Package terminator data
'E' (default) | scalar

Specifies the data located at the end of the received data package, which is not part of the data being
received, and generally indicates end of data. The additional package terminator must be an ASCII
value. You can use a text value or a numeric value in the range (0–255). You must put single quotes
around text entered in this field, but the quotes are not received and they are not included in the total
byte count.

Data type — Output data type
single (default) | int8 | uint8 | int16 | uint16 | int32 | uint32

Specifies the data type of the block output.

Data size — Output data size
1 (default) | scalar | matrix

Specifies the output data size or the number of values that should be read at every simulation time
step.

1 Blocks

1-110

Initial output — Default block output value
0 (default) | scalar

Specifies the initial or default output value of the block. This value is used, for example, if a
connection timeout occurs and the Action taken when connection times out parameter is set to
Output the last received value, but the block has not received any value yet.

Action taken when connection times out — Action taken by block when connection
times out
Output the last received value (default) | Output custom value | Error

Specifies what to output if a connection timeout occurs.

• Output the last received value — The block outputs the value received at the preceding
time step. If the block did not receive a value previously, it outputs the value of the Initial output
parameter.

• Output custom value — The block outputs a user-defined value. Use the Output value when
connection times out parameter to define this custom value.

• Error — The block outputs an error.

Output value when connection times out — Output custom value when the connection
times out
0 (default) | scalar

Specifies a custom value that the block outputs when a connection timeout occurs.

Dependencies

To enable this parameter, set Action taken when connection times out to either Output custom
value or Error.

Sample time — Sample time for block execution
-1 (default) | scalar

Determines how often the Host Serial Receive block is called (in seconds). When you set this value to
-1, the model inherits the sample time of the model. To execute this block asynchronously, set
Sample time to -1.

Output receiving status — Enable status output port
off (default) | on

Select this parameter to enable the status output port that provides the status of the transaction. If
you clear this parameter, the block hides the status port.

Enable blocking mode — Block simulation while receiving data
on (default) | off

Select this parameter to block the simulation while receiving data. Clear this parameter if you do not
want the read operation to block the simulation.

If you enable the blocking mode, the model blocks the simulation while it is waiting to receive the
requested data. When you do not enable the blocking mode, the simulation runs continuously.

 Host Serial Receive

1-111

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Host Serial Setup | Host Serial Transmit

Introduced in R2020a

1 Blocks

1-112

Host Serial Setup
Configure communication ports used by Host Serial Receive and Host Serial Transmit blocks
Library: Motor Control Blockset / Protection and Diagnostics

Description
The Host Serial Setup block is a standalone block that standardizes the serial communication (COM)
port settings used by the Host Serial Receive and Host Serial Transmit blocks.

Setting the COM port configurations globally by using the Host Serial Setup block avoids conflicts.
For example, the Host Serial Transmit block cannot use a COM1 port with settings different than
those on the COM1 port of the Host Serial Receive block. You need to set the port configurations only
once for each COM port.

Parameters
Port name — Port that you want to configure
'Please_select_a_port' (default) | 'COM3'

Select an available serial port that you want to configure. By default no port is selected and this field
displays 'Please_select_a_port'. Use a configured port in the Host Serial Transmit and Host
Serial Receive blocks. Both transmit and receive blocks must use a serial port that you configure
using the Host Serial Setup block.

Baud rate — Baud rate for serial communication
115200 (default) | scalar

Enter the rate at which the model transmits the bits through the serial interface.

Number of stop bits — Number of stop bits
1 (default) | 2

Enter the number of bits that the model uses to indicate the end of a byte.

Parity mode — Method used to check parity bits
none (default) | odd | even

Specify how you want to check parity bits in the data bits that the model transmits through the serial
port.

• none — Model does not perform parity check.
• odd — Model sets the parity bit to 0 if the number of ones in a given set of bits is even.
• even — Model sets the parity bit to 1 if the number of ones in a given set of bits is odd.

Timeout — Time interval before a one-way communication times out
1.0 (default) | scalar

 Host Serial Setup

1-113

Enter values greater than or equal to zero (seconds). When the COM port involved is using the
protocol mode, this value indicates how long the transmitting side waits for an acknowledgement
from the receiving side or how long the receiving side waits for data.

The system displays a warning message every n number of seconds, when the transmit or receive
block exceeds the Timeout value of n seconds.

Byte order — Byte order for serial communication
LittleEndian (default) | BigEndian

Specify the byte order as either LittleEndian or BigEndian. If byte order is LittleEndian, the
model stores the first byte in the first memory address. If byte order is BigEndian, the model stores
the last byte in the first memory address. You should configure the byte order to an appropriate value
before performing a read or write operation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Host Serial Receive | Host Serial Transmit

Introduced in R2020a

1 Blocks

1-114

Host Serial Transmit
Configure host-side serial communications interface to transmit data to serial port
Library: Motor Control Blockset / Protection and Diagnostics

Description
The Host Serial Transmit block specifies the configuration of the data that it transmits to the target
hardware.

The data package that the block sends is limited to 16 bytes of ASCII characters, including package
headers and terminators. Calculate the size of a package by including the package header, or
terminator, or both, and the data size. This table shows the number of bytes in each data type.

Data Type Byte Count
single 4 bytes
int8 and uint8 1 byte
int16 and uint16 2 bytes
int32 and uint32 4 bytes

For example, if your data package has a package header 'S' (1 byte) and package terminator 'E' (1
byte), that leaves 14 bytes for the actual data. If your data is of type int8, there is space in the data
package for 14 int8s. If your data is of type uint16, there is space in the data package for 7
uint16s. If your data is of type int32, there is space in the data package for only 3 int32s, with 2
bytes left over. Even though you could fit two int8s or one uint16 in the remaining space, you
should not, because you cannot mix data types in the same package.

The number of data types that can fit into a data package determine the data size. In the preceding
example, the data size is 14 for int8 and 7 for uint16. When the data size exceeds 16 bytes,
unexpected behavior, including run-time errors, are likely to occur.

Ports
Input

data — Port to receive data to be transmitted
scalar

This port accepts both one-dimensional and matrix data for transmission to the target hardware.
Data Types: single | int8 | uint8 | int16 | uint16 | int32 | uint32

 Host Serial Transmit

1-115

Parameters
Serial Connection — Serial port used for transmitting data
Serial 1 (default) | Serial 2 | Serial 3 | Serial 4

Specify a serial port to transmit to the target hardware. Select an available serial port from the list.
You can configure the selected port using the Host Serial Setup block. If you do not configure a serial
port, the block prompts you to do so. Each Host Serial Transmit block must have a configured serial
port. If you use multiple ports in your simulation, you must configure each port separately.

Additional package header — Package header data
'S' (default) | scalar

Specifies the data located at the front of the transmitted data package, which is not part of the data
being transmitted, and generally indicates start of data. The additional package header must be an
ASCII value. You can use a text value or a numeric value in the range (0–255). You must put single
quotes around the text that you enter in this field, but the quotes are not transmitted and they are not
included in the total byte count.

Additional package terminator — Package terminator data
'E' (default) | scalar

Specifies the data located at the end of the transmitted data package, which is not part of the data
being transmitted, and generally indicates end of data. The additional package terminator must be an
ASCII value. You can use a text value or a numeric value in the range (0–255). You must put single
quotes around text entered in this field, but the quotes are not transmitted and they are not included
in the total byte count.

Enable blocking mode — Block simulation while sending data
off (default) | on

Select this parameter to block the simulation while transmitting data. Clear this parameter if you do
not want the write operation to block the simulation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Host Serial Setup | Host Serial Receive

Introduced in R2020a

1 Blocks

1-116

Flux Observer
Compute electrical position, magnetic flux, and electrical torque of rotor
Library: Motor Control Blockset / Sensorless Estimators

Description
The Flux Observer block computes the electrical position, magnetic flux, and electrical torque of a
PMSM or an induction motor by using the per unit voltage and current values along the α- and β-axes
in the stationary αβ reference frame.

Equations

These equations describe how the block computes the electrical position, magnetic flux, and
electrical torque for a PMSM.

ψα = ∫ (Vα− IαR)dt− Ls ⋅ Iα

ψβ = ∫ (Vβ− IβR)dt− Ls ⋅ Iβ

ψ = ψα
2 + ψβ

2

Te = 3
2P(ψαIβ− ψβIα)

θe = tan−1 ψβ
ψα

These equations describe how the block computes the rotor electrical position, rotor magnetic flux,
and electrical torque for an induction motor.

ψα =
Lr
Lm

 ∫ (Vα− IαR)dt− σLsIα

ψβ =
Lr
Lm

 ∫ (Vβ− IβR)dt− σLsIβ

 Flux Observer

1-117

σ = 1−
Lm

2

Lr ⋅ Ls

ψ = ψα
2 + ψβ

2

Te = 3
2 ⋅ P ⋅

Lm
Lr

(ψαIβ− ψβIα)

θe = tan−1 ψβ
ψα

where:

• Vα and Vβ are the α-axis and β-axis voltages (Volts).
• Iα and Iβ are the α-axis and β-axis current (Amperes).
• R is the stator resistance of the motor (Ohms).
• Ls is the stator inductance of the motor (Henry).
• Lr is the rotor inductance of the motor (Henry).
• Lm is the magnetizing inductance of the motor (Henry).
• σ is the total leakage factor of the induction motor.
• P is the number of motor pole pairs.
• ψ is the rotor magnetic flux (Weber).
• ψα and ψβ are the rotor magnetic fluxes along the α- and β-axes (Weber).
• Te is the electrical torque of the rotor (Nm).
• θe is the electrical position of the rotor (Radians).

Ports
Input

Vα — α-axis voltage
scalar

Voltage component along the α-axis in the stationary αβ reference frame.
Data Types: single | double | fixed point

Vβ — β-axis voltage
scalar

Voltage component along the β-axis in the stationary αβ reference frame.
Data Types: single | double | fixed point

Iα — α-axis current
scalar

Current along the α-axis in the stationary αβ reference frame.
Data Types: single | double | fixed point

1 Blocks

1-118

Iβ — β-axis current
scalar

Current along the β-axis in the stationary αβ reference frame.
Data Types: single | double | fixed point

Rst — Reset block
scalar

The pulse (true value) that resets the block algorithm.
Data Types: single | double | fixed point

Output

θe — Electrical position of motor
scalar

The electrical position of the rotor as estimated by the block.

Dependencies

To enable this port, set Block output to Position.
Data Types: single | double | fixed point

Ψ — Rotor flux of motor
scalar

The magnetic flux of the rotor as estimated by the block.

Dependencies

To enable this port, set Block output to Flux.
Data Types: single | double | fixed point

Te — Electrical torque of motor
scalar

The electrical torque of the rotor as estimated by the block.

Dependencies

To enable this port, set Block output to Torque.
Data Types: single | double | fixed point

Parameters
Motor parameters

Motor selection — Type of motor
PMSM (default) | ACIM

Select the type of motor that the block supports.

 Flux Observer

1-119

Input units — Unit of voltage and current inputs
SI unit (default) | Per-unit

Select the unit of the α and β-axes voltage and current input values.

Block output — Select outputs that block should compute
Position (default) | Flux | Torque

Select one or more quantities that the block should compute and display in the block output.

Note You must select at least one value. The block displays an error message if you click Ok or
Apply without selecting any value.

Pole pairs — Number of pole pairs available in motor
4 (default) | scalar

Number of pole pairs available in the motor.
Dependencies

To enable this parameter, set Block output to Torque.

Stator resistance (ohm) — Stator winding resistance
0.36 (default) | scalar

Stator phase winding resistance of the motor in ohms.

Stator d-axis inductance (H) — Stator winding inductance along d-axis
0.2e-3 (default) | scalar

Stator winding inductance of the motor along d-axis in Henry.
Dependencies

To enable this parameter, set Motor selection to PMSM.

Stator leakage inductance (H) — Leakage inductance of stator winding
0.0068 (default) | scalar

Leakage inductance of the induction motor stator winding in Henry.
Dependencies

To enable this parameter, set Motor selection to ACIM.

Rotor leakage inductance (H) — Leakage inductance of rotor winding
0.0068 (default) | scalar

Leakage inductance of the induction motor rotor winding in Henry.
Dependencies

To enable this parameter, set Motor selection to ACIM.

Magnetizing inductance (H) — Magnetizing inductance of induction motor
0.0300 (default) | scalar

1 Blocks

1-120

Magnetizing inductance of the induction motor in Henry.

Dependencies

To enable this parameter, set Motor selection to ACIM.

Cutoff frequency (Hz) — Cutoff frequency of internal high-pass filter
3.1863 (default) | scalar

Cutoff frequency of the internal high-pass filter (that filters noise) in Hertz.

The Flux Observer block uses an internal first order IIR high-pass filter. You should set the Cutoff
frequency (Hz) for this filter to a value that is lower than the lowest frequency corresponding to the
minimum speed of the motor. For example, you can enter a value that is one-tenth of the lowest
electrical frequency of the stator voltages and the currents. However, you can adjust this value to
determine a more accurate cutoff frequency that generates the desired block output.

Discrete step size (s) — Sample time after which block executes again
50e-6 (default) | scalar

The fixed time interval in seconds between two consecutive instances of block execution.

Datatypes

Position unit — Unit of electrical position output
Radians (default) | Degrees | Per-unit

Unit of the electrical position output.

Dependencies

To enable this parameter, set Block output to Position.

Position datatype — Data type of electrical position output
single (default) | double | fixed point

Data type of the electrical position output.

Dependencies

To enable this parameter, set Block output to Position.

Flux unit — Unit of magnetic flux output
Weber (default) | Per-unit

Unit of the magnetic flux output.

Dependencies

To enable this parameter, set Block output to Flux.

Flux datatype — Data type of magnetic flux output
single (default) | double | fixed point

Data type of the magnetic flux output.

 Flux Observer

1-121

Dependencies

To enable this parameter, set Block output to Flux.

Torque unit — Unit of electrical torque output
Nm (default) | Per-unit

Unit of the electrical torque output.

Dependencies

To enable this parameter, set Block output to Torque.

Torque datatype — Data type of electrical torque output
single (default) | double | fixed point

Data type of the electrical torque output.

Dependencies

To enable this parameter, set Block output to Torque.

References
[1] O. Sandre-Hernandez, J. J. Rangel-Magdaleno and R. Morales-Caporal, "Simulink-HDL

cosimulation of direct torque control of a PM synchronous machine based FPGA," 2014 11th
International Conference on Electrical Engineering, Computing Science and Automatic
Control (CCE), Campeche, 2014, pp. 1-6. (doi: 10.1109/ICEEE.2014.6978298)

[2] Y. Inoue, S. Morimoto and M. Sanada, "Control method suitable for direct torque control based
motor drive system satisfying voltage and current limitations," The 2010 International Power
Electronics Conference - ECCE ASIA -, Sapporo, 2010, pp. 3000-3006. (doi: 10.1109/
IPEC.2010.5543698)

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Sliding Mode Observer | Clarke Transform | Inverse Park Transform | Speed Measurement

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

Introduced in R2020a

1 Blocks

1-122

Interior PMSM
Three-phase interior permanent magnet synchronous motor with sinusoidal back electromotive force
Library: Powertrain Blockset / Propulsion / Electric Motors and

Inverters
Motor Control Blockset / Electrical Systems / Motors

Description
The Interior PMSM block implements a three-phase interior permanent magnet synchronous motor
(PMSM) with sinusoidal back electromotive force. The block uses the three-phase input voltages to
regulate the individual phase currents, allowing control of the motor torque or speed.

By default, the block sets the Simulation type parameter to Continuous to use a continuous
sample time during simulation. If you want to generate code for fixed-step double- and single-
precision targets, considering setting the parameter to Discrete. Then specify a Sample Time, Ts
parameter.

On the Parameters tab, if you select Back-emf, the block implements this equation to calculate the
permanent flux linkage constant.

λpm = 1
3 ⋅

Ke
1000P ⋅

60
2π

Motor Construction

This figure shows the motor construction with a single pole pair on the motor.

 Interior PMSM

1-123

The motor magnetic field due to the permanent magnets creates a sinusoidal rate of change of flux
with motor angle.

For the axes convention, the a-phase and permanent magnet fluxes are aligned when motor angle θr
is zero.

Three-Phase Sinusoidal Model Electrical System

The block implements these equations, expressed in the motor flux reference frame (dq frame). All
quantities in the motor reference frame are referred to the stator.

ωe = Pωm

d
dt id = 1

Ld
vd−

R
Ld

id +
Lq
Ld

Pωmiq

d
dt iq = 1

Lq
vq−

R
Lq

iq−
Ld
Lq

Pωmid−
λpmPωm

Lq

Te = 1.5P[λpmiq + (Ld− Lq)idiq]

The Lq and Ld inductances represent the relation between the phase inductance and the motor
position due to the saliency of the motor.

The equations use these variables.

Lq, Ld q- and d-axis inductances (H)
R Resistance of the stator windings (ohm)
iq, id q- and d-axis currents (A)
vq, vd q- and d-axis voltages (V)

1 Blocks

1-124

ωm Angular mechanical velocity of the motor (rad/s)
ωe Angular electrical velocity of the motor (rad/s)
λpm Permanent flux linkage constant (Wb)
Ke Back electromotive force (EMF) (Vpk_LL/krpm, where Vpk_LL is the peak voltage

line-to-line measurement)
P Number of pole pairs
Te Electromagnetic torque (Nm)
Θe Electrical angle (rad)

Mechanical System

The motor angular velocity is given by:

d
dtωm = 1

J Te− Tf − Fωm− Tm

dθm
dt = ωm

The equations use these variables.

J Combined inertia of motor and load (kgm^2)
F Combined viscous friction of motor and load (N·m/(rad/s))
θm Motor mechanical angular position (rad)
Tm Motor shaft torque (Nm)
Te Electromagnetic torque (Nm)
Tf Motor shaft static friction torque (Nm)
ωm Angular mechanical velocity of the motor (rad/s)

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal Description Variab
le

Equations

PwrIn
fo

PwrTrnsfrd — Power
transferred between blocks

• Positive signals indicate flow
into block

• Negative signals indicate
flow out of block

PwrMtr Mechanical
power

Pmot Pmot = − ωmTe

PwrBus Electrical
power

Pbus Pbus = vania + vbnib
+ vcnic

PwrNotTrnsfrd — Power
crossing the block boundary, but
not transferred

• Positive signals indicate an
input

PwrElec
Loss

Resistive
power loss

Pelec Pelec = − 3
2 (Rsisd

2

+ Rsisq
2)

 Interior PMSM

1-125

Bus Signal Description Variab
le

Equations

• Negative signals indicate a
loss

PwrMech
Loss

Mechanical
power loss

Pmech When Port
Configuration is set to
Torque:

Pmech = −
ωm

2 F + ωm Tf

When Port
Configuration is set to
Speed:

Pmech = 0
PwrStored — Stored energy
rate of change

• Positive signals indicate an
increase

• Negative signals indicate a
decrease

PwrMtrS
tored

Stored motor
power

Pstr Pstr = Pbus + Pmot +
 Pelec + Pmech

The equations use these variables.

Rs Stator resistance (ohm)
ia, ib, ic Stator phase a, b, and c current (A)
isq, isd Stator q- and d-axis currents (A)
van, vbn, vcn Stator phase a, b, and c voltage (V)
ωm Angular mechanical velocity of the rotor (rad/s)
F Combined motor and load viscous damping (N·m/(rad/s))
Te Electromagnetic torque (Nm)
Tf Combined motor and load friction torque (Nm)

Amplitude invariant dq transformation

The block uses these equations to implement amplitude invariant dq transformation to ensure that
the dq and three phase amplitudes are equal.

vsd
vsq

= 2
3

cos(Θda) cos(Θda−
2π
3) cos(Θda + 2π

3)

−sin(Θda) −sin(Θda−
2π
3) −sin(Θda + 2π

3)

va
vb
vc

ia
ib
ic

=

cos(Θda) −sin(Θda)

cos(Θda−
2π
3)

cos(Θda + 2π
3)

−sin(Θda−
2π
3)

−sin(Θda + 2π
3)

isd
isq

The equations use these variables.

1 Blocks

1-126

Θda dq stator electrical angle with respect to the rotor a-axis (rad)
vsq, vsd Stator q- and d-axis voltages (V)
isq, isd Stator q- and d-axis currents (A)
va, vb, vc Stator voltage phases a, b, c (V)
ia, ib, ic Stator currents phases a, b, c (A)

Ports
Input

LdTrq — Load torque on motor
scalar

Load torque on the motor shaft, Tm, in N·m.

Dependencies

To create this port, select Torque for the Port Configuration parameter.

Spd — Motor shaft speed
scalar

Angular velocity of the motor, ωm, in rad/s.

Dependencies

To create this port, select Speed for the Port Configuration parameter.

PhaseVolt — Stator terminal voltages
1-by-3 array

Stator terminal voltages, Va, Vb, and Vc, in V.

Dependencies

To create this port, select Speed or Torque for the Port Configuration parameter.

Output

Info — Bus signal
bus

The bus signal contains these block calculations.

Signal Description Variable Units
IaStator Stator phase current A ia A
IbStator Stator phase current B ib A
IcStator Stator phase current C ic A
IdSync Direct axis current id A
IqSync Quadrature axis current iq A
VdSync Direct axis voltage vd V

 Interior PMSM

1-127

Signal Description Variable Units
VqSync Quadrature axis voltage vq V
MtrSpd Angular mechanical velocity of the

motor
ωm rad/s

MtrPos Motor mechanical angular position θm rad
MtrTrq Electromagnetic torque Te N·m
PwrInfo PwrTrnsfrd PwrMtr Mechanical power Pmot W

PwrBus Electrical power Pbus W
PwrNotTrns
frd

PwrElecL
oss

Resistive power loss Pelec W

PwrMechL
oss

Mechanical power loss Pmech W

PwrStored PwrMtrSt
ored

Stored motor power Pstr W

PhaseCurr — Phase a, b, c current
1-by-3 array

Phase a, b, c current, ia, ib, and ic, in A.

MtrTrq — Motor torque
scalar

Motor torque, Tmtr, in N·m.

Dependencies

To create this port, select Speed for the Mechanical input configuration parameter.

MtrSpd — Motor speed
scalar

Angular speed of the motor, ωmtr, in rad/s.

Dependencies

To create this port, select Torque for the Mechanical input configuration parameter.

Parameters
Block Options

Mechanical input configuration — Select port configuration
Torque (default) | Speed

This table summarizes the port configurations.

Port Configuration Creates Input Port Creates Output Port
Torque LdTrq MtrSpd

1 Blocks

1-128

Port Configuration Creates Input Port Creates Output Port
Speed Spd MtrTrq

Simulation type — Select simulation type
Continuous (default) | Discrete

By default, the block uses a continuous sample time during simulation. If you want to generate code
for single-precision targets, considering setting the parameter to Discrete.

Dependencies

Setting Simulation type to Discrete creates the Sample Time, Ts parameter.

Sample Time (Ts) — Sample time for discrete integration
scalar

Integration sample time for discrete simulation, in s.

Dependencies

Setting Simulation type to Discrete creates the Sample Time, Ts parameter.

Load Parameters

File — Path to motor parameter ".m" or ".mat" file
scalar

Enter the path to the motor parameter ".m" or ".mat" file that you saved using the Motor Control
Blockset parameter estimation tool. You can also click the Browse button to navigate and select the
".m" or ".mat" file, and update File parameter with the file name and path. For details related to the
motor parameter estimation process, see “Estimate PMSM Parameters Using Recommended
Hardware”.

• Load from file - Click this button to read the estimated motor parameters from the ".m" or ".mat"
file (indicated by the File parameter) and load them to the motor block.

• Save to file - Click this button to read the motor parameters from the motor block and save them
into a ".m" or ".mat" file (with a file name and location that you specify in the File parameter).

Note Before you click Save to file button, ensure that the target file name in the File parameter has
either ".m" or ".mat" extension. If you use any other file extension, the block displays an error
message.

Parameters

Number of pole pairs (P) — Pole pairs
scalar

Motor pole pairs, P.

Stator phase resistance per phase (Rs) — Resistance
scalar

Stator phase resistance per phase, Rs, in ohm.

 Interior PMSM

1-129

Stator d-axis and q-axis inductance (Ldq) — Inductance
vector

Stator d-axis and q-axis inductance, Ld, Lq, in H.

Permanent flux linkage constant (lambda_pm) — Flux
scalar

Permanent flux linkage constant, λpm, in Wb.

Back-emf constant (Ke) — Back electromotive force
scalar

Back electromotive force, EMF, Ke, in Vpk_LL/krpm. Vpk_LL is the peak voltage line-to-line
measurement.

To calculate the permanent flux linkage constant, the block implements this equation.

λpm = 1
3 ⋅

Ke
1000P ⋅

60
2π

Physical inertia, viscous damping, and static friction (mechanical) — Inertia,
damping, friction
vector

Mechanical properties of the motor:

• Inertia, J, in kg.m^2
• Viscous damping, F, in N·m/(rad/s)
• Static friction, Tf, in N·m

Dependencies

To enable this parameter, select the Torque configuration parameter.

Initial Values

Initial d-axis and q-axis current (idq0) — Current
vector

Initial q- and d-axis currents, iq, id, in A.

Initial mechanical position (theta_init) — Angle
scalar

Initial motor angular position, θm0, in rad.

Initial mechanical speed (omega_init) — Speed
scalar

Initial angular velocity of the motor, ωm0, in rad/s.

Dependencies

To enable this parameter, select the Torque configuration parameter.

1 Blocks

1-130

References
[1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.

[2] Anderson, P. M. Analysis of Faulted Power Systems. Hoboken, NJ: Wiley-IEEE Press, 1995.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also

Introduced in R2017a

 Interior PMSM

1-131

Surface Mount PMSM
Three-phase exterior permanent magnet synchronous motor with sinusoidal back electromotive force
Library: Powertrain Blockset / Propulsion / Electric Motors and

Inverters
Motor Control Blockset / Electrical Systems / Motors

Description
The Surface Mount PMSM block implements a three-phase exterior permanent magnet synchronous
motor (PMSM) with sinusoidal back electromotive force. The block uses the three-phase input
voltages to regulate the individual phase currents, allowing control of the motor torque or speed.

By default, the block sets the Simulation type parameter to Continuous to use a continuous
sample time during simulation. If you want to generate code for fixed-step double- and single-
precision targets, considering setting the parameter to Discrete. Then specify a Sample Time, Ts
parameter.

On the Parameters tab, if you select Back-emf or Torque constant, the block implements one of
these equations to calculate the permanent flux linkage constant.

Setting Equation
Back-emf

λpm = 1
3 ⋅

Ke
1000P ⋅

60
2π

Torque constant
λpm = 2

3 ⋅
Kt
P

Motor Construction

This figure shows the motor construction with a single pole pair on the motor.

1 Blocks

1-132

The motor magnetic field due to the permanent magnets creates a sinusoidal rate of change of flux
with motor angle.

For the axes convention, the a-phase and permanent magnet fluxes are aligned when motor angle θr
is zero.

Three-Phase Sinusoidal Model Electrical System

The block implements these equations, expressed in the motor flux reference frame (dq frame). All
quantities in the motor reference frame are referred to the stator.

ωe = Pωm

d
dt id = 1

Ld
vd−

R
Ld

id +
Lq
Ld

Pωmiq

d
dt iq = 1

Lq
vq−

R
Lq

iq−
Ld
Lq

Pωmid−
λpmPωm

Lq

Te = 1.5P[λpmiq + (Ld− Lq)idiq]

The Lq and Ld inductances represent the relation between the phase inductance and the motor
position due to the saliency of the motor magnets. For the surface mount PMSM, Ld = Lq.

The equations use these variables.

Lq, Ld q- and d-axis inductances (H)
R Resistance of the stator windings (ohm)
iq, id q- and d-axis currents (A)
vq, vd q- and d-axis voltages (V)

 Surface Mount PMSM

1-133

ωm Angular mechanical velocity of the motor (rad/s)
ωe Angular electrical velocity of the motor (rad/s)
λpm Permanent magnet flux linkage (Wb)
Ke Back electromotive force (EMF) (Vpk_LL/krpm, where Vpk_LL is the peak voltage

line-to-line measurement)
Kt Torque constant (N·m/A)
P Number of pole pairs
Te Electromagnetic torque (Nm)
Θe Electrical angle (rad)

Mechanical System

The motor angular velocity is given by:

d
dtωm = 1

J Te− Tf − Fωm− Tm

dθm
dt = ωm

The equations use these variables.

J Combined inertia of motor and load (kgm^2)
F Combined viscous friction of motor and load (N·m/(rad/s))
θm Motor mechanical angular position (rad)
Tm Motor shaft torque (Nm)
Te Electromagnetic torque (Nm)
Tf Motor shaft static friction torque (Nm)
ωm Angular mechanical velocity of the motor (rad/s)

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal Description Variab
le

Equations

PwrIn
fo

PwrTrnsfrd — Power
transferred between blocks

• Positive signals indicate flow
into block

• Negative signals indicate
flow out of block

PwrMtr Mechanical
power

Pmot Pmot = − ωmTe

PwrBus Electrical
power

Pbus Pbus = vania + vbnib
+ vcnic

PwrNotTrnsfrd — Power
crossing the block boundary, but
not transferred

PwrElec
Loss

Resistive
power loss

Pelec Pelec = − 3
2 (Rsisd

2

+ Rsisq
2)

1 Blocks

1-134

Bus Signal Description Variab
le

Equations

• Positive signals indicate an
input

• Negative signals indicate a
loss

PwrMech
Loss

Mechanical
power loss

Pmech When Port
Configuration is set to
Torque:

Pmech = −
ωm

2 F + ωm Tf

When Port
Configuration is set to
Speed:

Pmech = 0
PwrStored — Stored energy
rate of change

• Positive signals indicate an
increase

• Negative signals indicate a
decrease

PwrMtrS
tored

Stored motor
power

Pstr Pstr = Pbus + Pmot +
 Pelec + Pmech

The equations use these variables.

Rs Stator resistance (ohm)
ia, ib, ic Stator phase a, b, and c current (A)
isq, isd Stator q- and d-axis currents (A)
van, vbn, vcn Stator phase a, b, and c voltage (V)
ωm Angular mechanical velocity of the motor (rad/s)
F Combined motor and load viscous damping N·m/(rad/s)
Te Electromagnetic torque (Nm)
Tf Combined motor and load friction torque (Nm)

Ports
Input

LdTrq — Load torque on motor
scalar

Load torque on the motor shaft, Tm, in N·m.
Dependencies

To create this port, select Torque for the Port Configuration parameter.

Spd — Motor shaft speed
scalar

Angular velocity of the motor, ωm, in rad/s.

 Surface Mount PMSM

1-135

Dependencies

To create this port, select Speed for the Port Configuration parameter.

PhaseVolt — Stator terminal voltages
1-by-3 array

Stator terminal voltages, Va, Vb, and Vc, in V.

Output

Info — Bus signal
bus

The bus signal contains these block calculations.

Signal Description Variable Units
IaStator Stator phase current A ia A
IbStator Stator phase current B ib A
IcStator Stator phase current C ic A
IdSync Direct axis current id A
IqSync Quadrature axis current iq A
VdSync Direct axis voltage vd V
VqSync Quadrature axis voltage vq V
MtrSpd Angular mechanical velocity of the

motor
ωm rad/s

MtrPos Motor mechanical angular position θm rad
MtrTrq Electromagnetic torque Te N·m
PwrInfo PwrTrnsfrd PwrMtr Mechanical power Pmot W

PwrBus Electrical power Pbus W
PwrNotTrns
frd

PwrElecLo
ss

Resistive power loss Pelec W

PwrMechLo
ss

Mechanical power loss Pmech W

PwrStored PwrMtrSto
red

Stored motor power Pstr W

PhaseCurr — Phase a, b, c current
1-by-3 array

Phase a, b, c current, ia, ib, and ic, in A.

MtrTrq — Motor torque
scalar

Motor torque, Tmtr, in N·m.

1 Blocks

1-136

Dependencies

To create this port, select Speed for the Mechanical input configuration parameter.

MtrSpd — Motor speed
scalar

Angular speed of the motor, ωmtr, in rad/s.

Dependencies

To create this port, select Torque for the Mechanical input configuration parameter.

Parameters
Block Options

Mechanical input configuration — Select port configuration
Torque (default) | Speed

This table summarizes the port configurations.

Port Configuration Creates Input Port Creates Output Port
Torque LdTrq MtrSpd
Speed Spd MtrTrq

Simulation type — Select simulation type
Continuous (default) | Discrete

By default, the block uses a continuous sample time during simulation. If you want to generate code
for single-precision targets, considering setting the parameter to Discrete.

Dependencies

Setting Simulation type to Discrete creates the Sample Time, Ts parameter.

Sample Time (Ts) — Sample time for discrete integration
scalar

Integration sample time for discrete simulation, in s.

Dependencies

Setting Simulation type to Discrete creates the Sample Time, Ts parameter.

Load Parameters

File — Path to motor parameter ".m" or ".mat" file
scalar

Enter the path to the motor parameter ".m" or ".mat" file that you saved using the Motor Control
Blockset parameter estimation tool. You can also click the Browse button to navigate and select the
".m" or ".mat" file, and update File parameter with the file name and path. For details related to the
motor parameter estimation process, see “Estimate PMSM Parameters Using Recommended
Hardware”.

 Surface Mount PMSM

1-137

• Load from file - Click this button to read the estimated motor parameters from the ".m" or ".mat"
file (indicated by the File parameter) and load them to the motor block.

• Save to file - Click this button to read the motor parameters from the motor block and save them
into a ".m" or ".mat" file (with a file name and location that you specify in the File parameter).

Note Before you click Save to file button, ensure that the target file name in the File parameter has
either ".m" or ".mat" extension. If you use any other file extension, the block displays an error
message.

Parameters

Number of pole pairs (P) — Pole pairs
scalar

Motor pole pairs, P.

Stator phase resistance per phase (Rs) — Resistance
scalar

Stator phase resistance per phase, Rs, in ohm.

Stator d-axis inductance (Ldq_) — Inductance
scalar

Stator inductance, Ldq, in H.

Permanent flux linkage constant (lambda_pm) — Flux
scalar

Permanent flux linkage constant, λpm, in Wb.

Back-emf constant (Ke) — Back electromotive force
scalar

Back electromotive force, EMF, Ke, in peak Vpk_LL/krpm. Vpk_LL is the peak voltage line-to-line
measurement.

To calculate the permanent flux linkage constant, the block implements this equation.

λpm = 1
3 ⋅

Ke
1000P ⋅

60
2π

Torque constant (Kt) — Torque constant
scalar

Torque constant, Kt, in N·m/A.

To calculate the permanent flux linkage constant, the block implements this equation.

λpm = 2
3 ⋅

Kt
P

1 Blocks

1-138

Physical inertia, viscous damping, and static friction (mechanical) — Inertia,
damping, friction
vector

Mechanical properties of the motor:

• Inertia, J, in kg.m^2
• Viscous damping, F, in N·m/(rad/s)
• Static friction, Tf, in N·m

Dependencies

To enable this parameter, select the Torque configuration parameter.

Initial Values

Initial d-axis and q-axis current (idq0) — Current
vector

Initial q- and d-axis currents, iq, id, in A.

Initial mechanical position (theta_init) — Angle
scalar

Initial motor angular position, θm0, in rad.

Initial mechanical speed (omega_init) — Speed
scalar

Initial angular velocity of the motor, ωm0, in rad/s.

Dependencies

To enable this parameter, select the Torque configuration parameter.

References
[1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.

[2] Anderson, P. M. Analysis of Faulted Power Systems. Hoboken, NJ: Wiley-IEEE Press, 1995.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also

Introduced in R2017a

 Surface Mount PMSM

1-139

Field Oriented Control Autotuner
Automatically and sequentially tune multiple PID control loops in field-oriented control application
Library: Motor Control Blockset / Controls / Controllers

Description
The Field Oriented Control Autotuner block allows you to automatically tune PID control loops in your
field-oriented control (FOC) application in real time. For more information on field-oriented control,
see “Field-Oriented Control (FOC)”.

You can automatically tune PID controllers associated with the following loops:

• Direct-axis (d-axis) current loop
• Quadrature-axis (q-axis) current loop
• Speed loop
• Flux loop

For each loop the block tunes, the Field Oriented Control Autotuner block performs the autotuning
experiment in closed-loop without a parametric model associated with that loop. The block allows you
to specify the order in which the control loops are tuned. When the tuning experiment is running for
one loop, the block has no effect on the other loops. During the experiment, the block:

1 Injects a test signal into the plant associated with that loop to collect plant input-output data and
estimate frequency response in real time. The test signal is combination of sinusoidal
perturbation signals added on top of the plant input.

2 At the end of the experiment, tunes PID controller parameters based on estimated plant
frequency responses near the target bandwidth.

3 Writes updated PID gains at the block output, allowing you to transfer the new gains to existing
controllers and validate the closed-loop performance.

You can use the Field Oriented Control Autotuner block to tune the existing PID controllers in your
FOC structure. If you do not have the initial PID controllers, you can use the “Estimate Control Gains
from Motor Parameters” workflow to obtain them. You can then use the Field Oriented Control
Autotuner block for refinement or retuning.

If you have a code-generation product such as Simulink Coder™, you can generate code that
implements the tuning algorithm on hardware, letting you tune in real time, using or without using
Simulink to manage the autotuning process.

If you have a machine modeled in Simulink with Motor Control Blockset and an initial FOC structure
with PID controllers, you can perform closed-loop PID autotuning against the modeled machine.
Doing so lets you preview the plant response and adjust the settings for PID autotuning before tuning
the controller in real time.

1 Blocks

1-140

The block supports code generation with Simulink Coder, Embedded Coder®, and Simulink PLC
Coder™. It does not support code generation with HDL Coder™. For real-time applications, deploy
the generated code on a rapid prototyping hardware such as Speedgoat® real-time target machine.

For more information about using the Field Oriented Control Autotuner block, see “How to Use Field
Oriented Control Autotuner Block”.

This block requires Simulink Control Design™ software.

Ports
Input

PIDout_daxis — Signal from direct-axis current controller
scalar

This port accepts the output of the d-axis controller PID_daxis, which is the output of PID controller
that regulates the d-axis current of the motor. The controller generates the d-axis voltage reference
Vd_ref, while the FOC autotuner block generates perturbations used during the tuning experiment
for the d-axis current loop.

Dependencies

To enable this port, select Tune D-axis current loop.
Data Types: single | double

measured feedback_daxis — Measured direct-axis current
scalar

This port accepts the d-axis current obtained from the measured (sensed or estimated) motor
currents.
Dependencies

To enable this port, select Tune D-axis current loop.
Data Types: single | double

PIDout_qaxis — Signal from quadrature-axis current controller
scalar

This port accepts the output of the q-axis controller PID_qaxis, which is the output of PID controller
that regulates the q-axis current of the motor. The controller generates the q-axis voltage reference
Vq_ref, while the FOC autotuner block generates perturbations used during the tuning experiment
for the q-axis current loop.

 Field Oriented Control Autotuner

1-141

Dependencies

To enable this port, select Tune Q-axis current loop.
Data Types: single | double

measured feedback_qaxis — Measured quadrature-axis current
scalar

This port accepts the q-axis current obtained from the measured (sensed or estimated) motor
currents.

Dependencies

To enable this port, select Tune Q-axis current loop.
Data Types: single | double

PIDout_spd — Signal from speed controller
scalar

This port accepts the output of the speed controller PID_speed, which is the output of PID controller
that regulates the speed of the motor. The controller generates the q-axis current reference Iq_ref,
while the FOC autotuner block generates perturbations used during the tuning experiment for the
speed loop.

Dependencies

To enable this port, select Tune speed loop.
Data Types: single | double

measured feedback_spd — Measured speed
scalar

1 Blocks

1-142

This port accepts the measured (sensed or estimated) speed from the motor.

Dependencies

To enable this port, select Tune speed loop.
Data Types: single | double

PIDout_flux — Signal from flux controller
scalar

This port accepts the output of the flux controller PID_flux, which is the output of PID controller
that regulates the flux of the motor. The controller generates the d-axis current reference Id_ref,
while the FOC autotuner block generates perturbations used during the tuning experiment for the
flux loop.

For a permanent magnet synchronous motor (PMSM), there is no flux loop controller as the rotor flux
is fixed and Id_ref is set to zero. In some applications you can provide a negative Id_ref value to
implement field-weakening control and achieve higher rotor speeds at the cost of a higher current.

Dependencies

To enable this port, select Tune flux loop.
Data Types: single | double

measured feedback_flux — Measured flux
scalar

This port accepts the measured (sensed or estimated) flux from the motor.

Dependencies

To enable this port, select Tune flux loop.
Data Types: single | double

start/stop — Start and stop autotuning experiment
scalar

To externally start and stop the autotuning process, provide a signal at the start/stop port and the
ActiveLoop port.

• The experiment starts when the value of the signal changes from negative or zero to positive.

 Field Oriented Control Autotuner

1-143

• The experiment stops when the value of the signal changes from positive to negative or zero.

For the duration of the experiment, for each loop, the block injects sinusoidal perturbations at the
plant input associated with the loop, near the nominal operating point, to collect input-output data
and estimate frequency response. When the experiment stops, the block computes PID gains based
on the plant frequency responses estimated near the target bandwidth.

When the experiment is not running, the block does not inject any perturbations at the plant inputs.
In this state, the block has no impact on plant or controller behavior.

Typically, you can use a signal that changes from 0 to 1 to start the experiment, and from 1 to 0 to
stop it. Consider the following when you configure the start/stop signal.

• Start the experiment when the motor is at the desired equilibrium operating point. Use the initial
controller to drive the motor to the operating point.

• Avoid any input or output disturbance on the motor during the experiment. If your existing closed-
loop system has good disturbance rejection, then the experiment can handle small disturbances.
Otherwise, large disturbances can distort the plant output and reduce the accuracy of the
frequency-response estimation.

• Let the experiment run long enough for the algorithm to collect sufficient data for a good estimate
at all frequencies it probes. There are two ways to determine when to stop the experiment:

• Determine the experiment duration in advance. A conservative estimate for the experiment
duration is 200/ωc in superposition experiment mode or 550/ωc in sinestream experiment
mode, where ωc is your target bandwidth.

• Observe the signal at the convergence output, and stop the experiment when the signal
stabilizes near 100%.

• When you stop the experiment, the block computes tuned PID gains and updates the signal at the
pid gains port.

You can configure any logic appropriate for your application to control the start and stop times of the
experiment. The start/stop signal is specified along with ActiveLoop. ActiveLoop takes integer
values 1 to 4 and specifies which loop to tune.

Alternatively, if you are tuning in simulation or external mode, you can specify the tuning experiment
sequence, start time and duration in the block parameters.

Dependencies

To enable this port, on the Block tab under Parameters Source, select Use external source for
start/stop of experiment.
Data Types: single | double

ActiveLoop — Specify active loop for autotuning experiment
scalar

Set the ActiveLoop value to specify which loop to tune when providing an external source for the
start and stop times of the tuning experiment.

ActiveLoop Value Loop to Tune
1 D-axis current loop

1 Blocks

1-144

ActiveLoop Value Loop to Tune
2 Q-axis current loop
3 Speed loop
4 Flux loop

You can configure any logic appropriate for your application along with the start/stop port to
control the sequence and the time at which the loop tuning experiment runs. ActiveLoop takes
integer values from 1 to 4 and specifies which loop to tune. Any other number will result in no tuning
taking place regardless of the start/stop signal. For example, when you supply a constant value 2
at ActiveLoop and the signal at start/stop rises, the block starts the tuning experiment for the q-
axis current loop.

Alternatively, you can specify the tuning experiment sequence, start time, and duration in the block
parameters.
Dependencies

To enable this port, on the Block tab under Parameters Source, select Use external source for
start/stop of experiment.
Data Types: single | double

bandwidth — Target bandwidth for tuning
scalar | vector | bus

Supply the values for the Target bandwidth (rad/sec) parameter for each loop to be tuned. If
you are tuning multiple loops, you can specify the bandwidth as a vector or bus, entries of which
correspond to the target bandwidth for the loops in this order:

• D-axis current loop
• Q-axis current loop
• Speed loop
• Flux loop

The vector signal must be specified as a N-by-1 or 1-by-N signal or if specified as a bus must have N
elements, where N is the number of loops to be tuned. For instance, if you are tuning the q-axis
current loop and the speed loop, and you specify a vector [5000, 200] at this port, the block tunes the
q-axis current controller with the target bandwidth 5000 rad/sec and the speed loop controller with
the target bandwidth 200 rad/sec.

If you are tuning multiple loops and specify a scalar value at this port, then the block uses the same
target bandwidth to tune all the controllers. For effective cascade control, the inner control loops (d-
axis and q-axis) must respond much faster than the outer control loops (flux and speed). Therefore,
you must supply the target bandwidth as a vector or bus signal when tuning multiple loops.

Alternatively, you can specify target bandwidth for individual loops in block parameters. For more
information on how to choose a bandwidth, see that parameter description.
Dependencies

To enable this port, on the Block tab under Parameters Source, select Use external source for
bandwidth.
Data Types: single | double

 Field Oriented Control Autotuner

1-145

target PM — Target phase margin for tuning
scalar | vector | bus

Supply a value for the Target phase margin (degrees) parameter for each loop to be tuned. If
you are tuning multiple loops, you can specify target PM as a vector or bus, entries of which
correspond to the target phase margin for the loops in this order:

• D-axis current loop
• Q-axis current loop
• Speed loop
• Flux loop

The vector signal must be specified as a N-by-1 or 1-by-N signal or if specified as a bus must have N
elements, where N is the number of loops to be tuned. For instance, if you are tuning q-axis current
loop and speed loop, and you specify a vector [60, 45] at this port, the block tunes q-axis current
controller with target phase margin 60 degrees and speed loop controller with target phase margin
45 degrees.

If you are tuning multiple loops and specify a scalar value at this port, then the block uses the same
target phase margin to tune all the controllers.

Alternatively, you can specify target phase margin for individual loops in block parameters. For more
information on how to choose a target phase margin, see that parameter description.

Dependencies

To enable this port, on the Block tab under Parameters Source, select Use external source for
target phase margin.
Data Types: single | double

sine Amp — Amplitudes of injected sinusoidal perturbation signals
vector | matrix

Supply a value for the Sine Amplitudes parameter for each loop to be tuned. Specify one of the
following:

• Vector of length 5 to specify a different amplitude at each of [1/10, 1/3, 1, 3, 10]ωc , where ωc is
the target bandwidth for tuning.

• N-by-5 matrix, where N is the number of loops to be tuned. Each row entry must be of length 5 to
specify a different amplitude at each of [1/10, 1/3, 1, 3, 10]ωc .

If you are tuning multiple loops and specify a vector of length 5 at this port, then the block uses the
specified amplitude for all the loops at each of [1/10, 1/3, 1, 3, 10]ωc corresponding to that loop.

Alternatively, you can specify the sinusoidal perturbation amplitude for individual loops in block
parameters. For more information, see the parameter description.

Dependencies

To enable this port, on the Block tab under Parameters Source, select Use external source for
sine amplitudes.
Data Types: single | double

1 Blocks

1-146

Output

perturbation_daxis — Direct-axis current input perturbation
scalar

Perturbation signal input used for estimating the frequency-response data model associated with the
d-axis current control loop. Inject the perturbation signal from this port by using a sum block to the
output of the PID controller that regulates the d-axis current.

• When the experiment is running, the block generates perturbation signals at this port.
• When the experiment is not running, the signal at this port is zero. In this state, the block has no
effect on the plant.

Dependencies

To enable this port, select Tune D-axis current loop.
Data Types: single | double

perturbation_qaxis — Quadrature-axis current input perturbation
scalar

Perturbation signal input used for estimating the frequency-response data model associated with the
q-axis current control loop. Inject this perturbation signal from this port by using a sum block to the
output of the PID controller that regulates the q-axis current.

• When the experiment is running, the block generates perturbation signals at this port.
• When the experiment is not running, the signal at this port is zero. In this state, the block has no
effect on the plant.

Dependencies

To enable this port, select Tune Q-axis current loop.
Data Types: single | double

perturbation_spd — Speed input perturbation
scalar

Perturbation signal input used for estimating the frequency-response data model associated with the
motor speed control loop. Inject this perturbation signal from this port by using a sum block with the
output of the PID controller that regulates the speed of the motor.

• When the experiment is running, the block generates perturbation signals at this port.
• When the experiment is not running, the signal at this port is zero. In this state, the block has no
effect on the plant.

Dependencies

To enable this port, select Tune speed loop.
Data Types: single | double

perturbation_flux — Flux input perturbation
scalar

 Field Oriented Control Autotuner

1-147

Perturbation signal input used for estimating the frequency-response data model associated with the
motor flux control loop. Inject this perturbation signal from this port by using a sum block to the
output of the PID controller that regulates the flux linkage of the motor.

• When the experiment is running, the block generates perturbation signals at this port.
• When the experiment is not running, the signal at this port is zero. In this state, the block has no
effect on the plant.

Dependencies

To enable this port, select Tune flux loop.
Data Types: single | double

pid gains — Tuned PID coefficients
bus

This 4-element bus signal contains the tuned PID gains P, I, D, and the filter coefficient N for each
control loop the block tunes. These values correspond to the P, I, D, and N parameters in the
expressions given in the Form parameter. Initially, the values are 0, 0, 0, and 100, respectively. The
block updates the values when the experiment ends. The bus signal corresponding to each loop the
block tunes always has four elements, even if you are not tuning a PIDF controller.
Data Types: single | double

convergence — Convergence of FRD estimation during experiment
scalar

The block uses perturbation signals to estimate the frequency response of the plant associated with
each loop at several frequencies around the target bandwidth for tuning. convergence indicates
how close to completion the estimation of the plant frequency response is. Typically, this value
quickly rises to about 90% after the experiment begins, and then gradually converges to a higher
value. Stop the experiment when it levels off near 100%.
Data Types: single | double

estimated PM — Estimated phase margin for most recently tuned loop
scalar

This port outputs the estimated phase margin achieved by the tuned controller for the most recently
tuned loop, in degrees. The block updates this value when the tuning experiment ends for each loop.
The estimated phase margin is calculated from the angle of G(jωc)C(jωc), where G is the estimated
plant for that loop, C is the tuned controller, and ωc is the crossover frequency (bandwidth). The
estimated phase margin might differ from the target phase margin specified by the Target phase
margin (degrees) parameter. It is an indicator of the robustness and stability achieved by the
tuned system.

• Typically, the estimated phase margin is near the target phase margin. In general, the larger the
value, the more robust is the tuned system, and the less overshoot there is.

• A negative phase margin indicates that the closed-loop system might be unstable.

Dependencies

To enable this port, on the Block tab, select Estimated phase margin achieved by tuned
controllers.

1 Blocks

1-148

Data Types: single | double

frd — Estimated frequency response for most recently tuned loop
vector

This port outputs the frequency-response data estimated by the experiment for most recently tuned
loop. Initially, the value at frd is [0, 0, 0, 0, 0]. During the experiment, the block injects signals at
frequencies [1/10, 1/3, 1, 3, 10]ωc, where ωc is the target bandwidth. At each sample time during the
experiment, the block updates frd with a vector containing the complex frequency response at each
of these frequencies. You can use the progress of the response as an alternative to convergence to
examine the convergence of the estimation. When the experiment stops, the block updates frd with
the final estimated frequency response used for computing the PID gains.

Dependencies

To enable this port, on the Block tab, select Plant frequency responses near bandwidth.
Data Types: single | double

nominal — Plant input and output at nominal operating point for most recently tuned loop
vector

This port outputs a vector containing the plant input and plant output for the most recently tuned
loop or the loop currently being tuned. These values are the plant input and output at the nominal
operating point at which the block performs the experiment.

Dependencies

To enable this port, on the Block tab, select Plant nominal input and output.
Data Types: single | double

loop startstops — Active loop
bus

This 4-element bus signal indicates whether the tuning experiment for each loop tuned by the block is
active or not. For each signal in the bus, the port outputs the logical value 1 (true) for the loop when
the tuning experiment is running. The value is logical 0 (false) when the experiment is over or has
not yet started. You can use this port to trigger updates of PID gains for individual loops.

Dependencies

To enable this port, on the Block tab, disable Use external source for start/stop of experiment
and select Start/stop of autotuning process.
Data Types: single | double

Parameters
Tune D-axis current loop — Enable d-axis current loop tuning
on (default) | off

Use this parameter to enable or disable d-axis current loop autotuning.

Programmatic Use
Block Parameter: TuneDaxisLoop

 Field Oriented Control Autotuner

1-149

Type: character vector
Values: 'on' | 'off'
Default: 'on'

Tune Q-axis current loop — Enable q-axis current loop tuning
on (default) | off

Use this parameter to enable or disable q-axis current loop autotuning.

Programmatic Use
Block Parameter: TuneQaxisLoop
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Tune speed loop — Enable speed loop tuning
on (default) | off

Use this parameter to enable or disable speed loop autotuning.

Programmatic Use
Block Parameter: TuneSpeedLoop
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Tune flux loop — Enable flux loop tuning
on (default) | off

Use this parameter to enable or disable flux loop autotuning.

Programmatic Use
Block Parameter: TuneSpeedLoop
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Use same settings for current loop controllers (D-axis + Q-axis) — Enable same
tuning and experiment settings for direct-axis and quadrature-axis current loops
off (default) | on

Select this parameter to enable the same tuning and experiment settings for d-axis and q-axis current
loops. When enabled, the block uses the same controller settings, target bandwidth, phase margin,
and other experiment settings to tune d-axis and q-axis current loops.

Programmatic Use
Block Parameter: UseSameSettingsInner
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Use same settings for outer loop controllers (Speed + Flux) — Enable same
tuning and experiment settings for speed and flux loops
off (default) | on

1 Blocks

1-150

Select this parameter to enable the same tuning and experiment settings for speed and flux loops.
When enabled, the block uses the same controller settings, target bandwidth, phase margin, and
other experiment settings to tune speed and flux loops.

Programmatic Use
Block Parameter: UseSameSettingsOuter
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Tuning Tab

Use different sample time for tuning — Enable tuning at different sample time from
loop PID controller and experiment
off (default) | on

By default, the block runs tuning for each loop at the same sample time that you specify in the
Controller sample time (sec) parameter for that loop. Enable this parameter to run tuning at a
sample rate that is different from the sample rate of the PID controllers you are tuning and the
frequency response estimation experiment performed by the block. The PID gain tuning algorithm is
computationally intensive, and when you want to deploy the block to hardware and tune a controller
with a fast sample time, some hardware might not complete the PID gain calculation in a single time
step. To reduce the hardware throughput requirements, specify a tuning sample time slower than the
controller sample time using the Tuning sample time (sec) parameter.

Dependencies

To enable this parameter, set Time Domain to discrete-time.

Programmatic Use
Block Parameter: UseTuningTs
Type: character vector
Value 'off' | 'on'
Default: 'off'

Tuning sample time (sec) — Sample time of tuning algorithm
0.2 (default) | positive scalar

Specify the sample time of the tuning algorithm in seconds.

If you intend to deploy the block on hardware with limited processing power and want to tune a
controller with a fast sample time, specify a sample time such that the tuning algorithm runs at a
slower rate than the PID controllers you are tuning. For each loop that you tune, after the frequency
response estimation experiment ends, controller tuning occurs at the sample time specified in this
parameter.

Dependencies

To enable this parameter, select Use different sample time for tuning.

Programmatic Use
Block Parameter: TsTuning
Type: scalar
Value positive scalar
Default: 0.2

 Field Oriented Control Autotuner

1-151

D-axis Current Loop

Type — D-axis current loop PID controller actions
PI (default) | PID | PIDF | ...

Specify the type of PID controller associated with the d-axis current control loop.

The controller type indicates what actions are present in the controller that regulates the loop. The
following controller types are available for PID autotuning:

• P — Proportional only
• I — Integral only
• PI — Proportional and integral
• PD — Proportional and derivative
• PDF — Proportional and derivative with derivative filter
• PID — Proportional, integral, and derivative
• PIDF — Proportional, integral, and derivative with derivative filter

Make sure the controller type matches the controller that regulates the loop.

Programmatic Use
Block Parameter: PIDTypeDaxis
Type: character vector
Values: 'P' | 'I' | 'PI' | 'PD' | 'PDF' | 'PID' | 'PIDF'
Default: 'PI'

Form — D-axis current loop PID controller form
Parallel (default) | Ideal

Specify the PID controller form associated with your d-axis current control loop.

The controller form determines the interpretation of the PID coefficients P, I, D, and N.

• Parallel — In Parallel form, the transfer function of a discrete-time PIDF controller is

C = P + IFi z + D N
1 + NFd z ,

where Fi(z) and Fd(z) are the integrator and filter formulas (see Integrator method and
Filter method).

Other controller actions amount to setting P, I, or D to zero.
• Ideal — In Ideal form, the transfer function of a discrete-time PIDF controller is

C = P 1 + IFi z + D N
1 + NFd z .

Other controller actions amount to setting D to zero or setting I to Inf. (In ideal form, the
controller must have proportional action.)

Make sure the controller form matches the controller that regulates the loop.

Tunable: Yes

1 Blocks

1-152

Programmatic Use
Block Parameter: PIDFormDaxis
Type: character vector
Values: 'Parallel' | 'Ideal'
Default: 'Parallel'

Controller sample time (sec) — D-axis current loop PID controller sample time
0.001 (default) | positive scalar | –1

Specify the sample time of your PID controller associated with the d-axis current control loop in
seconds. This value also sets the sample time for the experiment performed by the block.

To perform PID tuning, the block measures frequency-response information up to a frequency of 10
times the target bandwidth. To ensure that this frequency is less than the Nyquist frequency, the
target bandwidth ωc must satisfy ωcTs ≤ 0.3, where Ts ωc is the controller sample time that you
specify with the Controller sample time (sec) parameter.

Make sure the controller sample time matches the controller that regulates the loop.

Tips

If you want to run the deployed block with different sample times in your application, set this
parameter to –1 and put the block in a Triggered Subsystem. Then, trigger the subsystem at the
desired sample time. If you do not plan to change the sample time after deployment, specify a fixed
and finite sample time.

Programmatic Use
Block Parameter: TsDaxis
Type: scalar
Value positive scalar | –1
Default: 0.001

Integrator method — D-axis current loop controller discrete integration formula for
integrator term
Forward Euler (default) | Backward Euler | Trapezoidal

Specify the discrete integration formula for the integrator term in your controller. In discrete time,
the PID controller transfer function assumed by the block is

C = P + IFi z + D N
1 + NFd z ,

in parallel form, or in ideal form,

C = P 1 + IFi z + D N
1 + NFd z .

For a controller sample time Ts, the Integrator method parameter determines the formula Fi as
follows.

Integrator method Fi
Forward Euler Ts

z − 1

 Field Oriented Control Autotuner

1-153

Integrator method Fi
Backward Euler Tsz

z − 1
Trapezoidal Ts

2
z + 1
z − 1

For more information about the relative advantages of each method, see the Discrete PID Controller
block reference page.

Make sure the controller integrator method matches the controller that regulates the loop.

Tunable: Yes
Dependencies

This parameter is enabled when the controller includes integral action.
Programmatic Use
Block Parameter: IntegratorMethodDaxis
Type: character vector
Values: 'Forward Euler' | 'Backward Euler' | 'Trapezoidal'
Default: 'Forward Euler'

Filter method — D-axis current loop controller discrete integration formula for derivative
filter term
Forward Euler (default) | Backward Euler | Trapezoidal

Specify the discrete integration formula for the derivative filter term in your controller. In discrete
time, the PID controller transfer function assumed by the block is

C = P + IFi z + D N
1 + NFd z ,

in parallel form, or in ideal form,

C = P 1 + IFi z + D N
1 + NFd z .

For a controller sample time Ts, the Filter method parameter determines the formula Fd as
follows.

Filter method Fd
Forward Euler Ts

z − 1
Backward Euler Tsz

z − 1
Trapezoidal Ts

2
z + 1
z − 1

For more information about the relative advantages of each method, see the Discrete PID Controller
block reference page.

Make sure the controller derivative filter method matches the controller that regulates the loop.

1 Blocks

1-154

Tunable: Yes

Dependencies

This parameter is enabled when the controller includes derivative action with a derivative filter term.

Programmatic Use
Block Parameter: FilterMethodDaxis
Type: character vector
Values: 'Forward Euler' | 'Backward Euler' | 'Trapezoidal'
Default: 'Forward Euler'

Target bandwidth (rad/sec) — D-axis current loop target crossover frequency of tuned
response
100 (default) | positive scalar

The target bandwidth is the target value for the 0 dB gain crossover frequency of the tuned open-loop
response CP, where P is the plant response associated with the loop, and C is the controller response.
This crossover frequency roughly sets the control bandwidth. For a rise time τ seconds, a good guess
for the target bandwidth is 2/τ rad/sec.

To perform PID tuning, the autotuner block measures frequency-response information up to a
frequency of 10 times the target bandwidth. To ensure that this frequency is less than the Nyquist
frequency, the target bandwidth ωc must satisfy ωcTs ≤ 0.3, where Ts is the controller sample time
that you specify with the Controller sample time (sec) parameter. Because of this condition, the
fastest rise time you can enforce for tuning is about 6.67Ts. If this rise time does not meet your design
goals, consider reducing Ts.

For best results, use a target bandwidth that is within about a factor of 10 of the bandwidth with the
initial PID controller. To tune a controller for a larger change in bandwidth, tune incrementally using
smaller changes.

To provide the target bandwidth by using an input port, on the Block tab, select Use external source
for bandwidth.

Programmatic Use
Block Parameter: BandwidthDaxis
Type: positive scalar
Default: 100

Target phase margin (degrees) — D-axis current loop target minimum phase margin
60 (default) | scalar in range 0–90

Specify a target minimum phase margin for the tuned open-loop response associated with the d-axis
current control loop at the crossover frequency.

The target phase margin reflects the desired robustness of the tuned system. Typically, choose a
value in the range of about 45°–60°. In general, a higher phase margin reduces overshoot, but can
limit the response speed. The default value 60° tends to balance performance and robustness,
yielding about 5–10% overshoot, depending on the characteristics of your plant.

To provide the target phase margin by using an input port, on the Block tab, select Use external
source for target phase margins.

Tunable: Yes

 Field Oriented Control Autotuner

1-155

Programmatic Use
Block Parameter: TargetPMDaxis
Type: scalar
Values: 0–90
Default: 60

Q-axis Current Loop

Type — Q-axis current loop PID controller actions
PI (default) | PID | PIDF | ...

Specify the type of PID controller associated with the q-axis current control loop.

The controller type indicates what actions are present in the controller that regulates the loop. The
following controller types are available for PID autotuning:

• P — Proportional only
• I — Integral only
• PI — Proportional and integral
• PD — Proportional and derivative
• PDF — Proportional and derivative with derivative filter
• PID — Proportional, integral, and derivative
• PIDF — Proportional, integral, and derivative with derivative filter

Make sure the controller type matches the controller that regulates the loop.

Programmatic Use
Block Parameter: PIDTypeQaxis
Type: character vector
Values: 'P' | 'I' | 'PI' | 'PD' | 'PDF' | 'PID' | 'PIDF'
Default: 'PI'

Form — Q-axis current loop PID controller form
Parallel (default) | Ideal

Specify the PID controller form associated with your q-axis current control loop.

The controller form determines the interpretation of the PID coefficients P, I, D, and N.

• Parallel — In Parallel form, the transfer function of a discrete-time PIDF controller is

C = P + IFi z + D N
1 + NFd z ,

where Fi(z) and Fd(z) are the integrator and filter formulas (see Integrator method and
Filter method).

Other controller actions amount to setting P, I, or D to zero.
• Ideal — In Ideal form, the transfer function of a discrete-time PIDF controller is

C = P 1 + IFi z + D N
1 + NFd z .

1 Blocks

1-156

Other controller actions amount to setting D to zero or setting I to Inf. (In ideal form, the
controller must have proportional action.)

Make sure the controller form matches the controller that regulates the loop.

Tunable: Yes

Programmatic Use
Block Parameter: PIDFormQaxis
Type: character vector
Values: 'Parallel' | 'Ideal'
Default: 'Parallel'

Controller sample time (sec) — Q-axis current loop PID controller sample time
0.001 (default) | positive scalar | –1

Specify the sample time of your PID controller associated with the q-axis current control loop in
seconds. This value also sets the sample time for the experiment performed by the block.

To perform PID tuning, the block measures frequency-response information up to a frequency of 10
times the target bandwidth. To ensure that this frequency is less than the Nyquist frequency, the
target bandwidth ωc must satisfy ωcTs ≤ 0.3, where Ts ωc is the controller sample time that you
specify with the Controller sample time (sec) parameter.

Make sure the controller sample time matches the controller that regulates the loop.

Tips

If you want to run the deployed block with different sample times in your application, set this
parameter to –1 and put the block in a Triggered Subsystem. Then, trigger the subsystem at the
desired sample time. If you do not plan to change the sample time after deployment, specify a fixed
and finite sample time.

Programmatic Use
Block Parameter: TsQaxis
Type: scalar
Value positive scalar | –1
Default: 0.001

Integrator method — Q-axis current loop controller discrete integration formula for
integrator term
Forward Euler (default) | Backward Euler | Trapezoidal

Specify the discrete integration formula for the integrator term in your controller. In discrete time,
the PID controller transfer function assumed by the block is

C = P + IFi z + D N
1 + NFd z ,

in parallel form, or in ideal form,

C = P 1 + IFi z + D N
1 + NFd z .

For a controller sample time Ts, the Integrator method parameter determines the formula Fi as
follows.

 Field Oriented Control Autotuner

1-157

Integrator method Fi
Forward Euler Ts

z − 1
Backward Euler Tsz

z − 1
Trapezoidal Ts

2
z + 1
z − 1

For more information about the relative advantages of each method, see the Discrete PID Controller
block reference page.

Make sure the controller integrator method matches the controller that regulates the loop.

Tunable: Yes

Dependencies

This parameter is enabled when the controller includes integral action.

Programmatic Use
Block Parameter: IntegratorMethodQaxis
Type: character vector
Values: 'Forward Euler' | 'Backward Euler' | 'Trapezoidal'
Default: 'Forward Euler'

Filter method — Q-axis current loop controller discrete integration formula for derivative
filter term
Forward Euler (default) | Backward Euler | Trapezoidal

Specify the discrete integration formula for the derivative filter term in your controller. In discrete
time, the PID controller transfer function assumed by the block is

C = P + IFi z + D N
1 + NFd z ,

in parallel form, or in ideal form,

C = P 1 + IFi z + D N
1 + NFd z .

For a controller sample time Ts, the Filter method parameter determines the formula Fd as
follows.

Filter method Fd
Forward Euler Ts

z − 1
Backward Euler Tsz

z − 1
Trapezoidal Ts

2
z + 1
z − 1

1 Blocks

1-158

For more information about the relative advantages of each method, see the Discrete PID Controller
block reference page.

Make sure the controller derivative filter method matches the controller that regulates the loop.

Tunable: Yes

Dependencies

This parameter is enabled when the controller includes derivative action with a derivative filter term.

Programmatic Use
Block Parameter: FilterMethodQaxis
Type: character vector
Values: 'Forward Euler' | 'Backward Euler' | 'Trapezoidal'
Default: 'Forward Euler'

Target bandwidth (rad/sec) — Q-axis current loop target crossover frequency of tuned
response
100 (default) | positive scalar

The target bandwidth is the target value for the 0 dB gain crossover frequency of the tuned open-loop
response CP, where P is the plant response associated with the loop, and C is the controller response.
This crossover frequency roughly sets the control bandwidth. For a rise time τ seconds, a good guess
for the target bandwidth is 2/τ rad/sec.

To perform PID tuning, the autotuner block measures frequency-response information up to a
frequency of 10 times the target bandwidth. To ensure that this frequency is less than the Nyquist
frequency, the target bandwidth ωc must satisfy ωcTs ≤ 0.3, where Ts is the controller sample time
that you specify with the Controller sample time (sec) parameter. Because of this condition, the
fastest rise time you can enforce for tuning is about 6.67Ts. If this rise time does not meet your design
goals, consider reducing Ts.

For best results, use a target bandwidth that is within about a factor of 10 of the bandwidth with the
initial PID controller. To tune a controller for a larger change in bandwidth, tune incrementally using
smaller changes.

To provide the target bandwidth by using an input port, on the Block tab, select Use external source
for bandwidth.

Programmatic Use
Block Parameter: BandwidthQaxis
Type: positive scalar
Default: 100

Target phase margin (degrees) — Q-axis current loop target minimum phase margin
60 (default) | scalar in range 0–90

Specify a target minimum phase margin for the tuned open-loop response associated with the q-axis
current control loop at the crossover frequency.

The target phase margin reflects the desired robustness of the tuned system. Typically, choose a
value in the range of about 45°–60°. In general, a higher phase margin reduces overshoot, but can
limit the response speed. The default value 60° tends to balance performance and robustness,
yielding about 5–10% overshoot, depending on the characteristics of your plant.

 Field Oriented Control Autotuner

1-159

To provide the target phase margin by using an input port, on the Block tab, select Use external
source for target phase margins.

Tunable: Yes

Programmatic Use
Block Parameter: TargetPMQaxis
Type: scalar
Values: 0–90
Default: 60

Speed Loop

Type — Speed loop PID controller actions
PI (default) | PID | PIDF | ...

Specify the type of PID controller associated with the speed control loop.

The controller type indicates what actions are present in the controller that regulates the loop. The
following controller types are available for PID autotuning:

• P — Proportional only
• I — Integral only
• PI — Proportional and integral
• PD — Proportional and derivative
• PDF — Proportional and derivative with derivative filter
• PID — Proportional, integral, and derivative
• PIDF — Proportional, integral, and derivative with derivative filter

Make sure the controller type matches the controller that regulates the loop.

Programmatic Use
Block Parameter: PIDTypeSpeed
Type: character vector
Values: 'P' | 'I' | 'PI' | 'PD' | 'PDF' | 'PID' | 'PIDF'
Default: 'PI'

Form — Speed loop PID controller form
Parallel (default) | Ideal

Specify the PID controller form associated with your speed control loop.

The controller form determines the interpretation of the PID coefficients P, I, D, and N.

• Parallel — In Parallel form, the transfer function of a discrete-time PIDF controller is

C = P + IFi z + D N
1 + NFd z ,

where Fi(z) and Fd(z) are the integrator and filter formulas (see Integrator method and
Filter method).

Other controller actions amount to setting P, I, or D to zero.

1 Blocks

1-160

• Ideal — In Ideal form, the transfer function of a discrete-time PIDF controller is

C = P 1 + IFi z + D N
1 + NFd z .

Other controller actions amount to setting D to zero or setting I to Inf. (In ideal form, the
controller must have proportional action.)

Make sure the controller form matches the controller that regulates the loop.

Tunable: Yes

Programmatic Use
Block Parameter: PIDFormSpeed
Type: character vector
Values: 'Parallel' | 'Ideal'
Default: 'Parallel'

Controller sample time (sec) — Speed loop PID controller sample time
0.1 (default) | positive scalar | –1

Specify the sample time of your PID controller associated with the speed control loop in seconds. This
value also sets the sample time for the experiment performed by the block.

To perform PID tuning, the block measures frequency-response information up to a frequency of 10
times the target bandwidth. To ensure that this frequency is less than the Nyquist frequency, the
target bandwidth ωc must satisfy ωcTs ≤ 0.3, where Ts ωc is the controller sample time that you
specify with the Controller sample time (sec) parameter.

Make sure the controller sample time matches the controller that regulates the loop.

Tips

If you want to run the deployed block with different sample times in your application, set this
parameter to –1 and put the block in a Triggered Subsystem. Then, trigger the subsystem at the
desired sample time. If you do not plan to change the sample time after deployment, specify a fixed
and finite sample time.

Programmatic Use
Block Parameter: TsSpeed
Type: scalar
Value positive scalar | –1
Default: 0.1

Integrator method — Speed loop controller discrete integration formula for integrator
term
Forward Euler (default) | Backward Euler | Trapezoidal

Specify the discrete integration formula for the integrator term in your controller. In discrete time,
the PID controller transfer function assumed by the block is

C = P + IFi z + D N
1 + NFd z ,

in parallel form, or in ideal form,

 Field Oriented Control Autotuner

1-161

C = P 1 + IFi z + D N
1 + NFd z .

For a controller sample time Ts, the Integrator method parameter determines the formula Fi as
follows.

Integrator method Fi
Forward Euler Ts

z − 1
Backward Euler Tsz

z − 1
Trapezoidal Ts

2
z + 1
z − 1

For more information about the relative advantages of each method, see the Discrete PID Controller
block reference page.

Make sure the controller integrator method matches the controller that regulates the loop.

Tunable: Yes

Dependencies

This parameter is enabled when the controller includes integral action.

Programmatic Use
Block Parameter: IntegratorMethodSpeed
Type: character vector
Values: 'Forward Euler' | 'Backward Euler' | 'Trapezoidal'
Default: 'Forward Euler'

Filter method — Speed loop controller discrete integration formula for derivative filter
term
Forward Euler (default) | Backward Euler | Trapezoidal

Specify the discrete integration formula for the derivative filter term in your controller. In discrete
time, the PID controller transfer function assumed by the block is

C = P + IFi z + D N
1 + NFd z ,

in parallel form, or in ideal form,

C = P 1 + IFi z + D N
1 + NFd z .

For a controller sample time Ts, the Filter method parameter determines the formula Fd as
follows.

Filter method Fd
Forward Euler Ts

z − 1

1 Blocks

1-162

Filter method Fd
Backward Euler Tsz

z − 1
Trapezoidal Ts

2
z + 1
z − 1

For more information about the relative advantages of each method, see the Discrete PID Controller
block reference page.

Make sure the controller derivative filter method matches the controller that regulates the loop.

Tunable: Yes
Dependencies

This parameter is enabled when the controller includes derivative action with a derivative filter term.
Programmatic Use
Block Parameter: FilterMethodSpeed
Type: character vector
Values: 'Forward Euler' | 'Backward Euler' | 'Trapezoidal'
Default: 'Forward Euler'

Target bandwidth (rad/sec) — Speed loop target crossover frequency of tuned response
1 (default) | positive scalar

The target bandwidth is the target value for the 0 dB gain crossover frequency of the tuned open-loop
response CP, where P is the plant response associated with the loop, and C is the controller response.
This crossover frequency roughly sets the control bandwidth. For a rise time τ seconds, a good guess
for the target bandwidth is 2/τ rad/sec.

To perform PID tuning, the autotuner block measures frequency-response information up to a
frequency of 10 times the target bandwidth. To ensure that this frequency is less than the Nyquist
frequency, the target bandwidth ωc must satisfy ωcTs ≤ 0.3, where Ts is the controller sample time
that you specify with the Controller sample time (sec) parameter. Because of this condition, the
fastest rise time you can enforce for tuning is about 6.67Ts. If this rise time does not meet your design
goals, consider reducing Ts.

For best results, use a target bandwidth that is within about a factor of 10 of the bandwidth with the
initial PID controller. To tune a controller for a larger change in bandwidth, tune incrementally using
smaller changes.

To provide the target bandwidth by using an input port, on the Block tab, select Use external source
for bandwidth.
Programmatic Use
Block Parameter: BandwidthSpeed
Type: positive scalar
Default: 1

Target phase margin (degrees) — Speed loop target minimum phase margin
60 (default) | scalar in range 0–90

Specify a target minimum phase margin for the tuned open-loop response associated with the speed
control loop at the crossover frequency.

 Field Oriented Control Autotuner

1-163

The target phase margin reflects the desired robustness of the tuned system. Typically, choose a
value in the range of about 45°–60°. In general, a higher phase margin reduces overshoot, but can
limit the response speed. The default value 60° tends to balance performance and robustness,
yielding about 5–10% overshoot, depending on the characteristics of your plant.

To provide the target phase margin by using an input port, on the Block tab, select Use external
source for target phase margins.

Tunable: Yes

Programmatic Use
Block Parameter: TargetPMSpeed
Type: scalar
Values: 0–90
Default: 60

Flux Loop

Type — Flux loop PID controller actions
PI (default) | PID | PIDF | ...

Specify the type of PID controller associated with the flux control loop.

The controller type indicates what actions are present in the controller that regulates the loop. The
following controller types are available for PID autotuning:

• P — Proportional only
• I — Integral only
• PI — Proportional and integral
• PD — Proportional and derivative
• PDF — Proportional and derivative with derivative filter
• PID — Proportional, integral, and derivative
• PIDF — Proportional, integral, and derivative with derivative filter

Make sure the controller type matches the controller that regulates the loop.

Programmatic Use
Block Parameter: PIDTypeFlux
Type: character vector
Values: 'P' | 'I' | 'PI' | 'PD' | 'PDF' | 'PID' | 'PIDF'
Default: 'PI'

Form — Flux loop PID controller form
Parallel (default) | Ideal

Specify the PID controller form associated with your flux control loop.

The controller form determines the interpretation of the PID coefficients P, I, D, and N.

• Parallel — In Parallel form, the transfer function of a discrete-time PIDF controller is

C = P + IFi z + D N
1 + NFd z ,

1 Blocks

1-164

where Fi(z) and Fd(z) are the integrator and filter formulas (see Integrator method and
Filter method).

Other controller actions amount to setting P, I, or D to zero.
• Ideal — In Ideal form, the transfer function of a discrete-time PIDF controller is

C = P 1 + IFi z + D N
1 + NFd z .

Other controller actions amount to setting D to zero or setting I to Inf. (In ideal form, the
controller must have proportional action.)

Make sure the controller form matches the controller that regulates the loop.

Tunable: Yes
Programmatic Use
Block Parameter: PIDFormFlux
Type: character vector
Values: 'Parallel' | 'Ideal'
Default: 'Parallel'

Controller sample time (sec) — Flux loop PID controller sample time
0.1 (default) | positive scalar | –1

Specify the sample time of your PID controller associated with the flux control loop in seconds. This
value also sets the sample time for the experiment performed by the block.

To perform PID tuning, the block measures frequency-response information up to a frequency of 10
times the target bandwidth. To ensure that this frequency is less than the Nyquist frequency, the
target bandwidth ωc must satisfy ωcTs ≤ 0.3, where Ts ωc is the controller sample time that you
specify with the Controller sample time (sec) parameter.

Make sure the controller sample time matches the controller that regulates the loop.
Tips

If you want to run the deployed block with different sample times in your application, set this
parameter to –1 and put the block in a Triggered Subsystem. Then, trigger the subsystem at the
desired sample time. If you do not plan to change the sample time after deployment, specify a fixed
and finite sample time.
Programmatic Use
Block Parameter: TsFlux
Type: scalar
Value positive scalar | –1
Default: 0.1

Integrator method — Flux loop controller discrete integration formula for integrator term
Forward Euler (default) | Backward Euler | Trapezoidal

Specify the discrete integration formula for the integrator term in your controller. In discrete time,
the PID controller transfer function assumed by the block is

C = P + IFi z + D N
1 + NFd z ,

 Field Oriented Control Autotuner

1-165

in parallel form, or in ideal form,

C = P 1 + IFi z + D N
1 + NFd z .

For a controller sample time Ts, the Integrator method parameter determines the formula Fi as
follows.

Integrator method Fi
Forward Euler Ts

z − 1
Backward Euler Tsz

z − 1
Trapezoidal Ts

2
z + 1
z − 1

For more information about the relative advantages of each method, see the Discrete PID Controller
block reference page.

Make sure the controller integrator method matches the controller that regulates the loop.

Tunable: Yes

Dependencies

This parameter is enabled when the controller includes integral action.

Programmatic Use
Block Parameter: IntegratorMethodFlux
Type: character vector
Values: 'Forward Euler' | 'Backward Euler' | 'Trapezoidal'
Default: 'Forward Euler'

Filter method — Flux loop controller discrete integration formula for derivative filter term
Forward Euler (default) | Backward Euler | Trapezoidal

Specify the discrete integration formula for the derivative filter term in your controller. In discrete
time, the PID controller transfer function assumed by the block is

C = P + IFi z + D N
1 + NFd z ,

in parallel form, or in ideal form,

C = P 1 + IFi z + D N
1 + NFd z .

For a controller sample time Ts, the Filter method parameter determines the formula Fd as
follows.

1 Blocks

1-166

Filter method Fd
Forward Euler Ts

z − 1
Backward Euler Tsz

z − 1
Trapezoidal Ts

2
z + 1
z − 1

For more information about the relative advantages of each method, see the Discrete PID Controller
block reference page.

Make sure the controller derivative filter method matches the controller that regulates the loop.

Tunable: Yes
Dependencies

This parameter is enabled when the controller includes derivative action with a derivative filter term.
Programmatic Use
Block Parameter: FilterMethodFlux
Type: character vector
Values: 'Forward Euler' | 'Backward Euler' | 'Trapezoidal'
Default: 'Forward Euler'

Target bandwidth (rad/sec) — Flux loop target crossover frequency of tuned response
1 (default) | positive scalar

The target bandwidth is the target value for the 0 dB gain crossover frequency of the tuned open-loop
response CP, where P is the plant response associated with the loop, and C is the controller response.
This crossover frequency roughly sets the control bandwidth. For a rise time τ seconds, a good guess
for the target bandwidth is 2/τ rad/sec.

To perform PID tuning, the autotuner block measures frequency-response information up to a
frequency of 10 times the target bandwidth. To ensure that this frequency is less than the Nyquist
frequency, the target bandwidth ωc must satisfy ωcTs ≤ 0.3, where Ts is the controller sample time
that you specify with the Controller sample time (sec) parameter. Because of this condition, the
fastest rise time you can enforce for tuning is about 6.67Ts. If this rise time does not meet your design
goals, consider reducing Ts.

For best results, use a target bandwidth that is within about a factor of 10 of the bandwidth with the
initial PID controller. To tune a controller for a larger change in bandwidth, tune incrementally using
smaller changes.

To provide the target bandwidth by using an input port, on the Block tab, select Use external source
for bandwidth.
Programmatic Use
Block Parameter: BandwidthFlux
Type: positive scalar
Default: 1

Target phase margin (degrees) — Flux loop target minimum phase margin
60 (default) | scalar in range 0–90

 Field Oriented Control Autotuner

1-167

Specify a target minimum phase margin for the tuned open-loop response associated with the flux
control loop at the crossover frequency.

The target phase margin reflects the desired robustness of the tuned system. Typically, choose a
value in the range of about 45°–60°. In general, a higher phase margin reduces overshoot, but can
limit the response speed. The default value 60° tends to balance performance and robustness,
yielding about 5–10% overshoot, depending on the characteristics of your plant.

To provide the target phase margin by using an input port, on the Block tab, select Use external
source for target phase margins.

Tunable: Yes

Programmatic Use
Block Parameter: TargetPMFlux
Type: scalar
Values: 0–90
Default: 60

Current Loops (Q-axis + D-axis)

Type — Current loop PID controller actions
PI (default) | PID | PIDF | ...

Specify the type of PID controller associated with the current control loops.

The controller type indicates what actions are present in the controller that regulates the loop. The
following controller types are available for PID autotuning:

• P — Proportional only
• I — Integral only
• PI — Proportional and integral
• PD — Proportional and derivative
• PDF — Proportional and derivative with derivative filter
• PID — Proportional, integral, and derivative
• PIDF — Proportional, integral, and derivative with derivative filter

Make sure the controller type matches the controller that regulates the loop.

Programmatic Use
Block Parameter: PIDTypeAllInner
Type: character vector
Values: 'P' | 'I' | 'PI' | 'PD' | 'PDF' | 'PID' | 'PIDF'
Default: 'PI'

Form — Current loop PID controller form
Parallel (default) | Ideal

Specify the PID controller form associated with your current control loops.

The controller form determines the interpretation of the PID coefficients P, I, D, and N.

• Parallel — In Parallel form, the transfer function of a discrete-time PIDF controller is

1 Blocks

1-168

C = P + IFi z + D N
1 + NFd z ,

where Fi(z) and Fd(z) are the integrator and filter formulas (see Integrator method and
Filter method).

Other controller actions amount to setting P, I, or D to zero.
• Ideal — In Ideal form, the transfer function of a discrete-time PIDF controller is

C = P 1 + IFi z + D N
1 + NFd z .

Other controller actions amount to setting D to zero or setting I to Inf. (In ideal form, the
controller must have proportional action.)

Make sure the controller form matches the controller that regulates the loop.

Tunable: Yes

Programmatic Use
Block Parameter: PIDFormAllInner
Type: character vector
Values: 'Parallel' | 'Ideal'
Default: 'Parallel'

Controller sample time (sec) — Current loop PID controller sample time
0.001 (default) | positive scalar | –1

Specify the sample time of your PID controllers associated with the current control loops in seconds.
This value also sets the sample time for the experiment performed by the block.

To perform PID tuning, the block measures frequency-response information up to a frequency of 10
times the target bandwidth. To ensure that this frequency is less than the Nyquist frequency, the
target bandwidth ωc must satisfy ωcTs ≤ 0.3, where Ts ωc is the controller sample time that you
specify with the Controller sample time (sec) parameter.

Make sure the controller sample time matches the controller that regulates the loop.

Tips

If you want to run the deployed block with different sample times in your application, set this
parameter to –1 and put the block in a Triggered Subsystem. Then, trigger the subsystem at the
desired sample time. If you do not plan to change the sample time after deployment, specify a fixed
and finite sample time.

Programmatic Use
Block Parameter: TsAllInner
Type: scalar
Value positive scalar | –1
Default: 0.001

Integrator method — Current loop controller discrete integration formula for integrator
term
Forward Euler (default) | Backward Euler | Trapezoidal

 Field Oriented Control Autotuner

1-169

Specify the discrete integration formula for the integrator term in your controller. In discrete time,
the PID controller transfer function assumed by the block is

C = P + IFi z + D N
1 + NFd z ,

in parallel form, or in ideal form,

C = P 1 + IFi z + D N
1 + NFd z .

For a controller sample time Ts, the Integrator method parameter determines the formula Fi as
follows.

Integrator method Fi
Forward Euler Ts

z − 1
Backward Euler Tsz

z − 1
Trapezoidal Ts

2
z + 1
z − 1

For more information about the relative advantages of each method, see the Discrete PID Controller
block reference page.

Make sure the controller integrator method matches the controller that regulates the loop.

Tunable: Yes

Dependencies

This parameter is enabled when the controller includes integral action.

Programmatic Use
Block Parameter: IntegratorMethodAllInner
Type: character vector
Values: 'Forward Euler' | 'Backward Euler' | 'Trapezoidal'
Default: 'Forward Euler'

Filter method — Current loop controller discrete integration formula for derivative filter
term
Forward Euler (default) | Backward Euler | Trapezoidal

Specify the discrete integration formula for the derivative filter term in your controller. In discrete
time, the PID controller transfer function assumed by the block is

C = P + IFi z + D N
1 + NFd z ,

in parallel form, or in ideal form,

C = P 1 + IFi z + D N
1 + NFd z .

1 Blocks

1-170

For a controller sample time Ts, the Filter method parameter determines the formula Fd as
follows.

Filter method Fd
Forward Euler Ts

z − 1
Backward Euler Tsz

z − 1
Trapezoidal Ts

2
z + 1
z − 1

For more information about the relative advantages of each method, see the Discrete PID Controller
block reference page.

Make sure the controller derivative filter method matches the controller that regulates the loop.

Tunable: Yes

Dependencies

This parameter is enabled when the controller includes derivative action with a derivative filter term.

Programmatic Use
Block Parameter: FilterMethodAllInner
Type: character vector
Values: 'Forward Euler' | 'Backward Euler' | 'Trapezoidal'
Default: 'Forward Euler'

Target bandwidth (rad/sec) — Current loop target crossover frequency of tuned
responses
100 (default) | positive scalar

The target bandwidth is the target value for the 0 dB gain crossover frequency of the tuned open-loop
response CP, where P is the plant response associated with the loop, and C is the controller response.
This crossover frequency roughly sets the control bandwidth. For a rise time τ seconds, a good guess
for the target bandwidth is 2/τ rad/sec.

To perform PID tuning, the autotuner block measures frequency-response information up to a
frequency of 10 times the target bandwidth. To ensure that this frequency is less than the Nyquist
frequency, the target bandwidth ωc must satisfy ωcTs ≤ 0.3, where Ts is the controller sample time
that you specify with the Controller sample time (sec) parameter. Because of this condition, the
fastest rise time you can enforce for tuning is about 6.67Ts. If this rise time does not meet your design
goals, consider reducing Ts.

For best results, use a target bandwidth that is within about a factor of 10 of the bandwidth with the
initial PID controller. To tune a controller for a larger change in bandwidth, tune incrementally using
smaller changes.

To provide the target bandwidth by using an input port, on the Block tab, select Use external source
for bandwidth.

Programmatic Use
Block Parameter: BandwidthAllInner

 Field Oriented Control Autotuner

1-171

Type: positive scalar
Default: 1

Target phase margin (degrees) — Current loop target minimum phase margins
60 (default) | scalar in range 0–90

Specify target minimum phase margin for the tuned open-loop responses associated with the current
control loops at the crossover frequency.

The target phase margin reflects the desired robustness of the tuned system. Typically, choose a
value in the range of about 45°–60°. In general, a higher phase margin reduces overshoot, but can
limit the response speed. The default value 60° tends to balance performance and robustness,
yielding about 5–10% overshoot, depending on the characteristics of your plant.

To provide the target phase margin by using an input port, on the Block tab, select Use external
source for target phase margins.

Tunable: Yes

Programmatic Use
Block Parameter: TargetPMAllInner
Type: scalar
Values: 0–90
Default: 60

Outer Loops (Speed + Flux)

Type — Outer loop PID controller actions
PI (default) | PID | PIDF | ...

Specify the type of PID controllers associated with the outer control loops.

The controller type indicates what actions are present in the controller that regulates the loop. The
following controller types are available for PID autotuning:

• P — Proportional only
• I — Integral only
• PI — Proportional and integral
• PD — Proportional and derivative
• PDF — Proportional and derivative with derivative filter
• PID — Proportional, integral, and derivative
• PIDF — Proportional, integral, and derivative with derivative filter

Make sure the controller type matches the controller that regulates the loop.

Programmatic Use
Block Parameter: PIDTypeAllOuter
Type: character vector
Values: 'P' | 'I' | 'PI' | 'PD' | 'PDF' | 'PID' | 'PIDF'
Default: 'PI'

Form — Outer loop PID controller form
Parallel (default) | Ideal

1 Blocks

1-172

Specify the PID controller form associated with your outer control loops.

The controller form determines the interpretation of the PID coefficients P, I, D, and N.

• Parallel — In Parallel form, the transfer function of a discrete-time PIDF controller is

C = P + IFi z + D N
1 + NFd z ,

where Fi(z) and Fd(z) are the integrator and filter formulas (see Integrator method and
Filter method).

Other controller actions amount to setting P, I, or D to zero.
• Ideal — In Ideal form, the transfer function of a discrete-time PIDF controller is

C = P 1 + IFi z + D N
1 + NFd z .

Other controller actions amount to setting D to zero or setting I to Inf. (In ideal form, the
controller must have proportional action.)

Make sure the controller form matches the controller that regulates the loop.

Tunable: Yes

Programmatic Use
Block Parameter: PIDFormAllOuter
Type: character vector
Values: 'Parallel' | 'Ideal'
Default: 'Parallel'

Controller sample time (sec) — Outer loop PID controller sample time
0.1 (default) | positive scalar | –1

Specify the sample time of your PID controllers associated with the outer control loop in seconds.
This value also sets the sample time for the experiment performed by the block.

To perform PID tuning, the block measures frequency-response information up to a frequency of 10
times the target bandwidth. To ensure that this frequency is less than the Nyquist frequency, the
target bandwidth ωc must satisfy ωcTs ≤ 0.3, where Ts ωc is the controller sample time that you
specify with the Controller sample time (sec) parameter.

Make sure the controller sample time matches the controller that regulates the loop.

Tips

If you want to run the deployed block with different sample times in your application, set this
parameter to –1 and put the block in a Triggered Subsystem. Then, trigger the subsystem at the
desired sample time. If you do not plan to change the sample time after deployment, specify a fixed
and finite sample time.

Programmatic Use
Block Parameter: TsAllOuter
Type: scalar
Value positive scalar | –1

 Field Oriented Control Autotuner

1-173

Default: 0.1

Integrator method — Outer loop controller discrete integration formula for integrator
term
Forward Euler (default) | Backward Euler | Trapezoidal

Specify the discrete integration formula for the integrator term in your controller. In discrete time,
the PID controller transfer function assumed by the block is

C = P + IFi z + D N
1 + NFd z ,

in parallel form, or in ideal form,

C = P 1 + IFi z + D N
1 + NFd z .

For a controller sample time Ts, the Integrator method parameter determines the formula Fi as
follows.

Integrator method Fi
Forward Euler Ts

z − 1
Backward Euler Tsz

z − 1
Trapezoidal Ts

2
z + 1
z − 1

For more information about the relative advantages of each method, see the Discrete PID Controller
block reference page.

Make sure the controller integrator method matches the controller that regulates the loop.

Tunable: Yes
Dependencies

This parameter is enabled when the controller includes integral action.
Programmatic Use
Block Parameter: IntegratorMethodAllOuter
Type: character vector
Values: 'Forward Euler' | 'Backward Euler' | 'Trapezoidal'
Default: 'Forward Euler'

Filter method — Outer loop controller discrete integration formula for derivative filter
term
Forward Euler (default) | Backward Euler | Trapezoidal

Specify the discrete integration formula for the derivative filter term in your controller. In discrete
time, the PID controller transfer function assumed by the block is

C = P + IFi z + D N
1 + NFd z ,

1 Blocks

1-174

in parallel form, or in ideal form,

C = P 1 + IFi z + D N
1 + NFd z .

For a controller sample time Ts, the Filter method parameter determines the formula Fd as
follows.

Filter method Fd
Forward Euler Ts

z − 1
Backward Euler Tsz

z − 1
Trapezoidal Ts

2
z + 1
z − 1

For more information about the relative advantages of each method, see the Discrete PID Controller
block reference page.

Make sure the controller derivative filter method matches the controller that regulates the loop.

Tunable: Yes
Dependencies

This parameter is enabled when the controller includes derivative action with a derivative filter term.
Programmatic Use
Block Parameter: FilterMethodAllOuter
Type: character vector
Values: 'Forward Euler' | 'Backward Euler' | 'Trapezoidal'
Default: 'Forward Euler'

Target bandwidth (rad/sec) — Outer loop target crossover frequency of tuned responses
1 (default) | positive scalar

The target bandwidth is the target value for the 0 dB gain crossover frequency of the tuned open-loop
response CP, where P is the plant response associated with the loop, and C is the controller response.
This crossover frequency roughly sets the control bandwidth. For a rise time τ seconds, a good guess
for the target bandwidth is 2/τ rad/sec.

To perform PID tuning, the autotuner block measures frequency-response information up to a
frequency of 10 times the target bandwidth. To ensure that this frequency is less than the Nyquist
frequency, the target bandwidth ωc must satisfy ωcTs ≤ 0.3, where Ts is the controller sample time
that you specify with the Controller sample time (sec) parameter. Because of this condition, the
fastest rise time you can enforce for tuning is about 6.67Ts. If this rise time does not meet your design
goals, consider reducing Ts.

For best results, use a target bandwidth that is within about a factor of 10 of the bandwidth with the
initial PID controller. To tune a controller for a larger change in bandwidth, tune incrementally using
smaller changes.

To provide the target bandwidth by using an input port, on the Block tab, select Use external source
for bandwidth.

 Field Oriented Control Autotuner

1-175

Programmatic Use
Block Parameter: BandwidthAllOuter
Type: positive scalar
Default: 1

Target phase margin (degrees) — Outer loop target minimum phase margins
60 (default) | scalar in range 0–90

Specify a target minimum phase margin for the tuned open-loop responses associated with the outer
control loops at the crossover frequency.

The target phase margin reflects the desired robustness of the tuned system. Typically, choose a
value in the range of about 45°–60°. In general, a higher phase margin reduces overshoot, but can
limit the response speed. The default value 60° tends to balance performance and robustness,
yielding about 5–10% overshoot, depending on the characteristics of your plant.

To provide the target phase margin by using an input port, on the Block tab, select Use external
source for target phase margins.

Tunable: Yes

Programmatic Use
Block Parameter: TargetPMAllOuter
Type: scalar
Values: 0–90
Default: 60

Experiment Tab

Experiment Start/Stop

D-axis current loop start time (sec) — Specify direct-axis current loop tuning
experiment start time
1 (default)

Specify the simulation time when the d-axis current loop tuning experiment starts.

Programmatic Use
Block Parameter: StartTimeDaxis
Type: positive scalar
Default: 1

D-axis current loop experiment duration (sec) — Specify direct-axis current loop
tuning experiment duration
0.05 (default)

Specify the d-axis current loop tuning experiment duration.

Programmatic Use
Block Parameter: DurationDaxis
Type: positive scalar
Default: 0.05

Q-axis current loop start time (sec) — Specify quadrature-axis current loop tuning
experiment start time
1.1 (default)

1 Blocks

1-176

Specify the simulation time when the q-axis current loop tuning experiment starts.

Programmatic Use
Block Parameter: StartTimeQaxis
Type: positive scalar
Default: 1.1

Q-axis current loop experiment duration (sec) — Specify quadrature-axis current
loop tuning experiment duration
0.05 (default)

Specify the q-axis current loop tuning experiment duration.

Programmatic Use
Block Parameter: DurationQaxis
Type: positive scalar
Default: 0.05

Speed loop start time (sec) — Specify speed loop tuning experiment start time
2 (default)

Specify the simulation time when the speed loop tuning experiment starts.

Programmatic Use
Block Parameter: StartTimeSpeed
Type: positive scalar
Default: 2

Speed loop experiment duration (sec) — Specify speed loop tuning experiment
duration
3 (default)

Specify the speed loop tuning experiment duration.

Programmatic Use
Block Parameter: DurationSpeed
Type: positive scalar
Default: 3

Flux loop start time (sec) — Specify flux loop tuning experiment start time
6 (default)

Specify the simulation time when the flux tuning experiment starts.

Programmatic Use
Block Parameter: StartTimeFlux
Type: positive scalar
Default: 6

Flux loop experiment duration (sec) — Specify flux loop tuning experiment duration
3 (default)

Specify the flux loop tuning experiment duration.

Programmatic Use
Block Parameter: DurationFlux

 Field Oriented Control Autotuner

1-177

Type: positive scalar
Default: 3

Loop Experiment Settings

Experiment Mode — Sinusoidal perturbation signal type
Superposition (default) | Sinestream

Specify whether the perturbation at each frequency is applied sequentially (Sinestream) or
simultaneously (Superposition).

• Sinestream — In this mode, the block applies perturbation at each frequency separately. For
more information about sinestream signals for estimation, see “Sinestream Input Signals”
(Simulink Control Design).

• Superposition — In this mode, the perturbation signal includes all specified frequencies at once.
For frequency response estimation at a vector of frequencies ω = [ω1, … , ωN] at amplitudes A =
[A1, … , AN], the perturbation signal is:

Δu = ∑
i

Aisin ωit .

Sinestream mode can be more accurate and can also be less intrusive, because the total size of the
perturbation is never bigger than the values specified by the Sine Amplitudes parameter. However,
due to the sequential nature of the sinestream perturbation, each frequency point you add increases
the recommended experiment time (see the start/stop input port for details). Thus, the estimation
experiment is typically much faster in Superposition mode with satisfactory results.

Sinestream signals reduce the execution time compared to superposition input signals, but also take
longer to estimate the frequency response. Frequency response estimation using sinestream signals
is useful when you have limited processing power and you want to reduce the execution time.
Programmatic Use
Block Parameter: ExperimentMode
Type: character vector
Values: 'Superposition' | 'Sinestream'
Default: 'Superposition'

D-axis Current Loop

Plant Type — Stability of direct-axis current plant
Stable (default) | Integrating

Specify whether the plant associated with the d-axis current control loop is stable or integrating. If
the plant has one or more integrators, select Integrating.
Programmatic Use
Block Parameter: PlantTypeDaxis
Type: character vector
Values: 'Stable' | 'Integrating'
Default: 'Stable'

Plant Sign — Sign of direct-axis current plant
Positive (default) | Negative

Specify whether the plant associated with the d-axis current control loop is positive or negative. If a
positive change in the plant input at the nominal operating point results in a positive change in the

1 Blocks

1-178

plant output, specify Positive. Otherwise, specify negative. For stable plants, the sign of the plant is
the sign of the plant DC gain.

Programmatic Use
Block Parameter: PlantSignDaxis
Type: character vector
Values: 'Positive' | 'Negative'
Default: 'Positive'

Sine Amplitudes — Amplitude of sinusoidal perturbations in direct-axis current loop
1 (default) | scalar | vector of length 5

During the experiment, the block injects a sinusoidal signal into the plant associated with the loop at
the frequencies [1/10, 1/3, 1, 3, 10]ωc , where ωc is the target bandwidth for tuning. Use Sine
Amplitudes to specify the amplitude of each of these injected signals. Specify a:

• Scalar value to inject the same amplitude at each frequency
• Vector of length 5 to specify a different amplitude at each of [1/10, 1/3, 1, 3, 10]ωc

In a typical plant with typical target bandwidth, the magnitudes of the plant responses at the
experiment frequencies do not vary widely. In such cases, you can use a scalar value to apply the
same magnitude perturbation at all frequencies. However, if you know that the response decays
sharply over the frequency range, consider decreasing the amplitude of the lower frequency inputs
and increasing the amplitude of the higher frequency inputs. It is numerically better for the
estimation experiment when all the plant responses have comparable magnitudes.

The perturbation amplitudes must be:

• Large enough that the perturbation overcomes any deadband in the plant actuator and generates
a response above the noise level

• Small enough to keep the plant running within the approximately linear region near the nominal
operating point, and to avoid saturating the plant input or output

When Experiment mode is Superposition, the sinusoidal signals are superimposed. Thus, the
perturbation can be at least as large as the sum of all amplitudes. Make sure that the largest possible
perturbation is within the range of your plant actuator. Saturating the actuator can introduce errors
into the estimated frequency response.

To provide the sine amplitudes by using an input port, on the Block tab, select Use external source
for sine amplitudes.

Tunable: Yes

Programmatic Use
Block Parameter: AmpSineDaxis
Type: scalar, vector of length 5
Default: 1

Q-axis Current Loop

Plant Type — Stability of quadrature-axis current plant
Stable (default) | Integrating

Specify whether the plant associated with the q-axis current control loop is stable or integrating. If
the plant has one or more integrators, select Integrating.

 Field Oriented Control Autotuner

1-179

Programmatic Use
Block Parameter: PlantTypeQaxis
Type: character vector
Values: 'Stable' | 'Integrating'
Default: 'Stable'

Plant Sign — Sign of quadrature-axis current plant
Positive (default) | Negative

Specify whether the plant associated with the q-axis current control loop is positive or negative. If a
positive change in the plant input at the nominal operating point results in a positive change in the
plant output, specify Positive. Otherwise, specify negative. For stable plants, the sign of the plant is
the sign of the plant DC gain.

Programmatic Use
Block Parameter: PlantSignQaxis
Type: character vector
Values: 'Positive' | 'Negative'
Default: 'Positive'

Sine Amplitudes — Amplitude of sinusoidal perturbations in quadrature-axis current loop
1 (default) | scalar | vector of length 5

During the experiment, the block injects a sinusoidal signal into the plant associated with the loop at
the frequencies [1/10, 1/3, 1, 3, 10]ωc , where ωc is the target bandwidth for tuning. Use Sine
Amplitudes to specify the amplitude of each of these injected signals. Specify a:

• Scalar value to inject the same amplitude at each frequency
• Vector of length 5 to specify a different amplitude at each of [1/10, 1/3, 1, 3, 10]ωc

In a typical plant with typical target bandwidth, the magnitudes of the plant responses at the
experiment frequencies do not vary widely. In such cases, you can use a scalar value to apply the
same magnitude perturbation at all frequencies. However, if you know that the response decays
sharply over the frequency range, consider decreasing the amplitude of the lower frequency inputs
and increasing the amplitude of the higher frequency inputs. It is numerically better for the
estimation experiment when all the plant responses have comparable magnitudes.

The perturbation amplitudes must be:

• Large enough that the perturbation overcomes any deadband in the plant actuator and generates
a response above the noise level

• Small enough to keep the plant running within the approximately linear region near the nominal
operating point, and to avoid saturating the plant input or output

When Experiment mode is Superposition, the sinusoidal signals are superimposed. Thus, the
perturbation can be at least as large as the sum of all amplitudes. Make sure that the largest possible
perturbation is within the range of your plant actuator. Saturating the actuator can introduce errors
into the estimated frequency response.

To provide the sine amplitudes by using an input port, on the Block tab, select Use external source
for sine amplitudes.

Tunable: Yes

1 Blocks

1-180

Programmatic Use
Block Parameter: AmpSineQaxis
Type: scalar, vector of length 5
Default: 1

Speed Loop

Plant Type — Stability of speed loop plant
Stable (default) | Integrating

Specify whether the plant associated with the speed control loop is stable or integrating. If the plant
has one or more integrators, select Integrating.

Programmatic Use
Block Parameter: PlantTypeSpeed
Type: character vector
Values: 'Stable' | 'Integrating'
Default: 'Stable'

Plant Sign — Sign of speed loop plant
Positive (default) | Negative

Specify whether the plant associated with the speed control loop is positive or negative. If a positive
change in the plant input at the nominal operating point results in a positive change in the plant
output, specify Positive. Otherwise, specify negative. For stable plants, the sign of the plant is the
sign of the plant DC gain.

Programmatic Use
Block Parameter: PlantSignSpeed
Type: character vector
Values: 'Positive' | 'Negative'
Default: 'Positive'

Sine Amplitudes — Amplitude of sinusoidal perturbations in speed loop
1 (default) | scalar | vector of length 5

During the experiment, the block injects a sinusoidal signal into the plant associated with the loop at
the frequencies [1/10, 1/3, 1, 3, 10]ωc , where ωc is the target bandwidth for tuning. Use Sine
Amplitudes to specify the amplitude of each of these injected signals. Specify a:

• Scalar value to inject the same amplitude at each frequency
• Vector of length 5 to specify a different amplitude at each of [1/10, 1/3, 1, 3, 10]ωc

In a typical plant with typical target bandwidth, the magnitudes of the plant responses at the
experiment frequencies do not vary widely. In such cases, you can use a scalar value to apply the
same magnitude perturbation at all frequencies. However, if you know that the response decays
sharply over the frequency range, consider decreasing the amplitude of the lower frequency inputs
and increasing the amplitude of the higher frequency inputs. It is numerically better for the
estimation experiment when all the plant responses have comparable magnitudes.

The perturbation amplitudes must be:

• Large enough that the perturbation overcomes any deadband in the plant actuator and generates
a response above the noise level

 Field Oriented Control Autotuner

1-181

• Small enough to keep the plant running within the approximately linear region near the nominal
operating point, and to avoid saturating the plant input or output

When Experiment mode is Superposition, the sinusoidal signals are superimposed. Thus, the
perturbation can be at least as large as the sum of all amplitudes. Make sure that the largest possible
perturbation is within the range of your plant actuator. Saturating the actuator can introduce errors
into the estimated frequency response.

To provide the sine amplitudes by using an input port, on the Block tab, select Use external source
for sine amplitudes.

Tunable: Yes

Programmatic Use
Block Parameter: AmpSineSpeed
Type: scalar, vector of length 5
Default: 1

Flux Loop

Plant Type — Stability of flux loop plant
Stable (default) | Integrating

Specify whether the plant associated with the flux control loop is stable or integrating. If the plant
has one or more integrators, select Integrating.

Programmatic Use
Block Parameter: PlantTypeFlux
Type: character vector
Values: 'Stable' | 'Integrating'
Default: 'Stable'

Plant Sign — Sign of flux loop plant
Positive (default) | Negative

Specify whether the plant associated with the flux control loop is positive or negative. If a positive
change in the plant input at the nominal operating point results in a positive change in the plant
output, specify Positive. Otherwise, specify negative. For stable plants, the sign of the plant is the
sign of the plant DC gain.

Programmatic Use
Block Parameter: PlantSignFlux
Type: character vector
Values: 'Positive' | 'Negative'
Default: 'Positive'

Sine Amplitudes — Amplitude of sinusoidal perturbations in flux loop
1 (default) | scalar | vector of length 5

During the experiment, the block injects a sinusoidal signal into the plant associated with the loop at
the frequencies [1/10, 1/3, 1, 3, 10]ωc , where ωc is the target bandwidth for tuning. Use Sine
Amplitudes to specify the amplitude of each of these injected signals. Specify a:

• Scalar value to inject the same amplitude at each frequency
• Vector of length 5 to specify a different amplitude at each of [1/10, 1/3, 1, 3, 10]ωc

1 Blocks

1-182

In a typical plant with typical target bandwidth, the magnitudes of the plant responses at the
experiment frequencies do not vary widely. In such cases, you can use a scalar value to apply the
same magnitude perturbation at all frequencies. However, if you know that the response decays
sharply over the frequency range, consider decreasing the amplitude of the lower frequency inputs
and increasing the amplitude of the higher frequency inputs. It is numerically better for the
estimation experiment when all the plant responses have comparable magnitudes.

The perturbation amplitudes must be:

• Large enough that the perturbation overcomes any deadband in the plant actuator and generates
a response above the noise level

• Small enough to keep the plant running within the approximately linear region near the nominal
operating point, and to avoid saturating the plant input or output

When Experiment mode is Superposition, the sinusoidal signals are superimposed. Thus, the
perturbation can be at least as large as the sum of all amplitudes. Make sure that the largest possible
perturbation is within the range of your plant actuator. Saturating the actuator can introduce errors
into the estimated frequency response.

To provide the sine amplitudes by using an input port, on the Block tab, select Use external source
for sine amplitudes.

Tunable: Yes

Programmatic Use
Block Parameter: AmpSineFlux
Type: scalar, vector of length 5
Default: 1

Current Loops (D-axis + Q-axis)

Plant Type — Stability of current loop plants
Stable (default) | Integrating

Specify whether the plants associated with the current control loops are stable or integrating. If the
plant has one or more integrators, select Integrating.

Programmatic Use
Block Parameter: PlantTypeAllInner
Type: character vector
Values: 'Stable' | 'Integrating'
Default: 'Stable'

Plant Sign — Sign of current loop plants
Positive (default) | Negative

Specify whether the plants associated with the current control loops are positive or negative. If a
positive change in the plant input at the nominal operating point results in a positive change in the
plant output, specify Positive. Otherwise, specify negative. For stable plants, the sign of the plant is
the sign of the plant DC gain.

Programmatic Use
Block Parameter: PlantSignAllInner
Type: character vector
Values: 'Positive' | 'Negative'

 Field Oriented Control Autotuner

1-183

Default: 'Positive'

Sine Amplitudes — Amplitude of sinusoidal perturbations in current loops
1 (default) | scalar | vector of length 5

During the experiment, the block injects a sinusoidal signal into the plant associated with the loop at
the frequencies [1/10, 1/3, 1, 3, 10]ωc , where ωc is the target bandwidth for tuning. Use Sine
Amplitudes to specify the amplitude of each of these injected signals. Specify a:

• Scalar value to inject the same amplitude at each frequency
• Vector of length 5 to specify a different amplitude at each of [1/10, 1/3, 1, 3, 10]ωc

In a typical plant with typical target bandwidth, the magnitudes of the plant responses at the
experiment frequencies do not vary widely. In such cases, you can use a scalar value to apply the
same magnitude perturbation at all frequencies. However, if you know that the response decays
sharply over the frequency range, consider decreasing the amplitude of the lower frequency inputs
and increasing the amplitude of the higher frequency inputs. It is numerically better for the
estimation experiment when all the plant responses have comparable magnitudes.

The perturbation amplitudes must be:

• Large enough that the perturbation overcomes any deadband in the plant actuator and generates
a response above the noise level

• Small enough to keep the plant running within the approximately linear region near the nominal
operating point, and to avoid saturating the plant input or output

When Experiment mode is Superposition, the sinusoidal signals are superimposed. Thus, the
perturbation can be at least as large as the sum of all amplitudes. Make sure that the largest possible
perturbation is within the range of your plant actuator. Saturating the actuator can introduce errors
into the estimated frequency response.

To provide the sine amplitudes by using an input port, on the Block tab, select Use external source
for sine amplitudes.

Tunable: Yes

Programmatic Use
Block Parameter: AmpSineAllInner
Type: scalar, vector of length 5
Default: 1

Outer Loops (Speed + Flux)

Plant Type — Stability of outer loop plants
Stable (default) | Integrating

Specify whether the plants associated with the outer control loops are stable or integrating. If the
plant has one or more integrators, select Integrating.

Programmatic Use
Block Parameter: PlantTypeAllOuter
Type: character vector
Values: 'Stable' | 'Integrating'
Default: 'Stable'

1 Blocks

1-184

Plant Sign — Sign of outer loop plants
Positive (default) | Negative

Specify whether the plants associated with the outer control loops are positive or negative. If a
positive change in the plant input at the nominal operating point results in a positive change in the
plant output, specify Positive. Otherwise, specify negative. For stable plants, the sign of the plant is
the sign of the plant DC gain.

Programmatic Use
Block Parameter: PlantSignAllOuter
Type: character vector
Values: 'Positive' | 'Negative'
Default: 'Positive'

Sine Amplitudes — Amplitude of sinusoidal perturbations in outer loops
1 (default) | scalar | vector of length 5

During the experiment, the block injects a sinusoidal signal into the plant associated with the loop at
the frequencies [1/10, 1/3, 1, 3, 10]ωc , where ωc is the target bandwidth for tuning. Use Sine
Amplitudes to specify the amplitude of each of these injected signals. Specify a:

• Scalar value to inject the same amplitude at each frequency
• Vector of length 5 to specify a different amplitude at each of [1/10, 1/3, 1, 3, 10]ωc

In a typical plant with typical target bandwidth, the magnitudes of the plant responses at the
experiment frequencies do not vary widely. In such cases, you can use a scalar value to apply the
same magnitude perturbation at all frequencies. However, if you know that the response decays
sharply over the frequency range, consider decreasing the amplitude of the lower frequency inputs
and increasing the amplitude of the higher frequency inputs. It is numerically better for the
estimation experiment when all the plant responses have comparable magnitudes.

The perturbation amplitudes must be:

• Large enough that the perturbation overcomes any deadband in the plant actuator and generates
a response above the noise level

• Small enough to keep the plant running within the approximately linear region near the nominal
operating point, and to avoid saturating the plant input or output

When Experiment mode is Superposition, the sinusoidal signals are superimposed. Thus, the
perturbation can be at least as large as the sum of all amplitudes. Make sure that the largest possible
perturbation is within the range of your plant actuator. Saturating the actuator can introduce errors
into the estimated frequency response.

To provide the sine amplitudes by using an input port, on the Block tab, select Use external source
for sine amplitudes.

Tunable: Yes

Programmatic Use
Block Parameter: AmpSineAllOuter
Type: scalar, vector of length 5
Default: 1

 Field Oriented Control Autotuner

1-185

Block Tab

Use external source for bandwidths — Supply external signal for target bandwidths
off (default) | on

Select this parameter to enable the bandwidth input port of the block. You can specify the target
bandwidth for all the loops the block tunes at this port. When this parameter is disabled, specify the
target bandwidths at the block parameters. For more details, see the bandwidth port description.

Programmatic Use
Block Parameter: UseExternalWc
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Use external source for target phase margins — Supply external signal for target
phase margin
off (default) | on

Select this parameter to enable the target PM input port of the block. You can specify the target
phase margin for all the loops the block tunes at this port. When this parameter is disabled, specify
the target phase margins at the block parameters. For more details, see the target PM port
description.

Programmatic Use
Block Parameter: UseExternalPM
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Use external source for start/stops of experiment — Supply external signal for
start and stop of tuning experiment
off (default) | on

Select this parameter to enable the start/stop and ActiveLoop input ports of the block. You can
specify the start and stop of the experiment and which loop the block tunes at these ports. When this
parameter is disabled, specify the start time and duration of the tuning experiment at the block
parameters. For more details, see the start/stop and ActiveLoop port descriptions.

Programmatic Use
Block Parameter: UseExternalSourceStartStop
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Use external source for sine amplitudes — Supply external signal for sinusoidal
perturbation amplitude
off (default) | on

Select this parameter to enable the sine Amp input port of the block. You can specify sinusoidal
perturbation amplitude for all the loops the block tunes at this port. When this parameter is disabled,
supply the sine amplitudes at block parameters. For more details, see the sine Amp port description.

Programmatic Use
Block Parameter: UseExternalAmpSine

1 Blocks

1-186

Type: character vector
Values: 'off' | 'on'
Default: 'off'

Data Type — Floating point precision
double (default) | single

Specify the floating-point precision based on the simulation environment or hardware requirements.

Programmatic Use
Block Parameter: BlockDataType
Type: character vector
Values: 'double' | 'single'
Default: 'double'

Estimated phase margin achieved by tuned controllers — Phase margin achieved by
most recently tuned loop
off (default) | on

Select this parameter to enable the estimated PM output port of the block. The block returns the
phase margin achieved by the tuned controller of the most recently tuned loop. When this parameter
is disabled, you can see the tuning results by using the Export to MATLAB parameter. For more
details, see the estimated PM port description.

Programmatic Use
Block Parameter: UseExternalAchievedPM
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Plant frequency responses near bandwidth — Estimated frequency response for most
recently tuned loop
off (default) | on

Select this parameter to enable the frd output port of the block. The block returns the phase margin
achieved by the tuned controller of the most recently tuned loop. When this parameter is disabled,
you can see the tuning results by using the Export to MATLAB parameter. For more details, see the
frd port description.

Programmatic Use
Block Parameter: UseExternalFRD
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Plant nominal input and output — Plant input and output at nominal operating point
off (default) | on

Select this parameter to enable the nominal output port of the block. The block returns the plant
input and output at the nominal operating point of the most recently tuned loop. When this parameter
is disabled, you can see the tuning results by using the Export to MATLAB parameter. For more
details, see the port description.

Programmatic Use
Block Parameter: UseExternalU0

 Field Oriented Control Autotuner

1-187

Type: character vector
Values: 'off' | 'on'
Default: 'off'

Start/stop of autotuning process — Signal indicating start and end of experiment for
each tuned loop
off (default) | on

Select this parameter to enable loop start/stops output port of the block. The block returns a
signal indicating the times at which the autotuning experiment started and ended for each loop tuned
by the block. When this parameter is disabled, you can see the tuning results by using the Export to
MATLAB parameter. For more details, see the loop start/stops port description.

Programmatic Use
Block Parameter: UseExternalActiveLoop
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Export to MATLAB — Send experiment and tuning results to MATLAB workspace
button

When you click this button, the block creates a structure in the MATLAB® workspace containing the
experiment and tuning results. This structure, FOCTuningResult, contains the tuning results for
each loop the block tunes.

• Daxis — D-axis current loop tuning results
• Qaxis — Q-axis current loop tuning results
• Speed — Speed loop tuning results
• Flux — Flux loop tuning results

For each loop tuned by the block, the result contains the following fields:

• P, I, D, N — Tuned PID gains. The structure contains whichever of these fields are necessary for
the controller type you are tuning. For instance, if you are tuning a PI controller, the structure
contains P and I, but not D and N.

• TargetBandwidth — The value you specified in the Target bandwidth (rad/sec) parameter
of the block.

• TargetPhaseMargin — The value you specified in the Target phase margin (degrees)
parameter of the block.

• EstimatedPhaseMargin — Estimated phase margin achieved by the tuned system.
• Controller — The tuned PID controller, returned as a pid (for parallel form) or pidstd (for

ideal form) model object.
• Plant — The estimated plant, returned as an frd model object. This frd contains the response

data obtained at the experiment frequencies [1/10, 1/3, 1, 3, 10]ωc.
• PlantNominal — The plant input and output at the nominal operating point when the experiment

begins, specified as a structure with the fields u (input) and y (output).

You can export to the MATLAB workspace while the simulation is running, including when running in
external mode.

1 Blocks

1-188

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The generated code for this block can be resource heavy. For real-time applications, deploying the
code on rapid prototyping hardware, such as the Speedgoat real-time target machine, is
recommended.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
Park Transform | Discrete PI Controller with anti-windup and reset | DQ Limiter | Speed
Measurement | Inverse Park Transform

Topics
“How to Use Field Oriented Control Autotuner Block”

Introduced in R2020a

 Field Oriented Control Autotuner

1-189

ACIM Control Reference
Compute reference currents for field-oriented control of induction motor
Library: Motor Control Blockset / Controls / Control Reference

Description
The ACIM Control Reference block computes the d-axis and q-axis reference currents for the field-
oriented control (and field-weakening) operation.

The block accepts the reference torque and feedback mechanical speed and outputs the
corresponding d- and q-axes reference currents.

The block computes the reference current values by solving mathematical relationships. The
calculations use the SI unit system. When working with the Per-Unit (PU) system (with the Input
units parameter set to Per-Unit (PU)), the block converts PU input signals to SI units to perform
the computations and converts them back to PU values at the output.

These equations describe how the block computes the reference d-axis and q-axis current values.

Mathematical Model of Induction Motor

These model equations describe the dynamics of induction motor in the rotor flux reference frame:

The machine inductances are represented as,

Ls = Lls + Lm

Lr = Llr + Lm

σ = 1−
Lm

2

Ls ⋅ Lr

Stator voltages are represented as,

vsd = Rsisd + σLs
disd
dt +

Lm
Lr

dλrd
dt − ωeσLsisq

vsq = Rsisq + σLs
disq
dt +

Lm
Lr

ωeλrd + ωeσLsisd

In the preceding equations, the flux linkages can be represented as,

λsd =
Lm
Lr

λrd + σLsisd

λsq = σLsisq

1 Blocks

1-190

τr
dλrd
dt + λrd = Lmisd

If we keep the rotor flux as constant and the d-axis is aligned to the rotor flux reference frame, then
we can imply:

λrd = Lmisd

λrq = 0

These equations describe the mechanical dynamics,

Te = 3
2p

Lm
Lr

λrdisq

Te− TL = J
dωm

dt + Bωm

These equations describe the slip speed,

τr =
Lr
Rr

ωe_slip =
Lm ⋅ isq

ref

τr ⋅ λrd

ωe = ωr + ωe_slip

θe = ∫ωe ⋅ dt =∫(ωr + ωe_slip) ⋅ dt = θr + θslip

Reference Current Computation

These equations show computation of the reference currents,

isd_0 =
λrd
Lm

isq_req = Tref

3
2p

Lm
Lr

λrd

The reference currents are computed differently for operation below base speed and field weakening
region,

If ωm ≤ ωbase:

isd_sat = min(isd_0, imax)

If ωm > ωbase:

isd_ fw =
isd_0

ωe

isd_sat = min(isd_ fw, imax)

 ACIM Control Reference

1-191

These equations indicate the q-axis current computation,

isq_lim = imax
2 − isd_sat

2

isq_sat = sat(isq_lim, isq_req)

The block outputs the following values,

isd
ref = isd_sat

isq
ref = isq_sat

where:

• p is the number of pole pairs of the motor.
• Rs is the stator phase winding resistance (Ohms).

• Rr is the rotor resistance referred to stator (Ohms).

• Lls is the stator leakage inductance (Henry).

• Llr is the rotor leakage inductance (Henry).

• Ls is the stator inductance (Henry).

• Lm is the magnetizing inductance (Henry).

• Lr is the rotor inductance referred to stator (Henry).

• σ is the total leakage factor of the induction motor.
• τr is the rotor time constant (sec).

• vsd and vsq are the stator d- and q-axis voltages (Volts).

• isd and isq are the stator d- and q-axis currents (Amperes).

• isd_0 is the rated d-axis current of the stator also known as magnetizing current (Amperes).

• imax is the maximum phase current (peak) of the motor (Amperes).

• λsd is the d-axis flux linkage of the stator (Weber).

• λsq is the q-axis flux linkage of the stator (Weber).

• λrd is the d-axis flux linkage of the rotor (Weber).

• λrq is the q-axis flux linkage of the rotor (Weber).

• ωe_slip is the electrical slip speed of the rotor (Radians/ sec).

• ωslip is the mechanical slip speed of the rotor (Radians/ sec).

• ωe is the electrical speed corresponding to frequency of stator voltages (Radians/ sec).

• ωm is the rotor mechanical speed (Radians/ sec).

• ωr is the rotor electrical speed (Radians/ sec).

• ωbase is the mechanical base speed of the motor (Radians/ sec).

• Te is the electromechanical torque produced by the motor (Nm).

1 Blocks

1-192

Ports
Input

Tref — Reference torque value
scalar

Reference torque input value for which the block computes the reference current.
Data Types: single | double | fixed point

⍵m — Mechanical speed
scalar

Reference mechanical speed value for which the block computes the reference current.
Data Types: single | double | fixed point

Output

Isdref — Reference d-axis stator current
scalar

Reference d-axis stator current value.
Data Types: single | double | fixed point

Isqref — Reference q-axis stator current
scalar

Reference q-axis stator current value.
Data Types: single | double | fixed point

Parameters
Number of pole pairs — Number of pole pairs available in motor
2 (default) | scalar

Number of pole pairs available in the induction motor.

Rotor leakage inductance (H) — Leakage inductance of rotor winding
6.81e-3 (default) | scalar

Inductance due to leakage flux linked to the rotor winding (in Henry).

Magnetizing Inductance (H) — Magnetizing inductance of induction motor
30e-3 (default) | scalar

Inductance due to the magnetizing flux (in Henry).

Rated Flux (Wb) — Rated flux of motor
38.2e-3 (default) | scalar

Rated flux of the induction motor (in Weber).

 ACIM Control Reference

1-193

Rated Speed (rpm) — Rated speed of motor
1150 (default) | scalar

Rated speed of the induction motor according to motor data sheet (in rpm).

Synchronous Speed (rpm) — Synchronous speed of motor
1500 (default) | scalar

Synchronous speed of the induction motor (in rpm).

Max current (A) — Maximum phase current limit for motor (amperes)
3 (default) | scalar

Maximum phase current limit for the induction motor (amperes).

Input units — Unit of input values
Per-Unit (PU) (default) | SI Units

Unit of the input values.

Base Current (A) — Base current for per-unit system
5.3611 (default) | scalar

Base current (in Amperes) for per-unit system.

Dependencies

To enable this parameter, set Input units to Per-Unit (PU).

Base torque (Nm) — Base torque for per-unit system
0.50072 (default) | scalar

Base torque (in Nm) for per-unit system. See “Per-Unit System” page for more details.

This parameter is not configurable and uses a value that is internally computed using other
parameters.

Dependencies

To display this parameter, set Input units to Per-Unit (PU).

References
[1] B. Bose, Modern Power Electronics and AC Drives. Prentice Hall, 2001. ISBN-0-13-016743-6.

[2] Lorenz, Robert D., Thomas Lipo, and Donald W. Novotny. "Motion control with induction motors."
Proceedings of the IEEE, Vol. 82, Issue 8, August 1994, pp. 1215-1240.

[3] W. Leonhard, Control of Electrical Drives, 3rd ed. Secaucus, NJ, USA:Springer-Verlag New York,
Inc., 2001.

[4] Briz, Fernando, Michael W. Degner, and Robert D. Lorenz. "Analysis and design of current
regulators using complex vectors." IEEE Transactions on Industry Applications, Vol. 36, Issue
3, May/June 2000, pp. 817-825.

1 Blocks

1-194

[5] Briz, Fernando, et al. "Current and flux regulation in field-weakening operation [of induction
motors]." IEEE Transactions on Industry Applications, Vol. 37, Issue 1, Jan/Feb 2001, pp.
42-50.

[6] R. M. Prasad and M. A. Mulla, “A novel position-sensorless algorithm for field oriented control of
DFIG with reduced current sensors,” IEEE Trans. Sustain. Energy, vol. 10, no. 3, pp. 1098–
1108, July 2019.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
MTPA Control Reference | ACIM Slip Speed Estimator | Discrete PI Controller with anti-windup and
reset | Speed Measurement

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

Introduced in R2020b

 ACIM Control Reference

1-195

ACIM Feed Forward Control
Decouple d-axis and q-axis current to eliminate disturbance
Library: Motor Control Blockset / Controls / Control Reference

Description
The ACIM Feed Forward Control block decouples d-axis and q-axis current controls and generates the
corresponding feed-forward voltage gains for field-oriented control of the induction motor.

The block accepts feedback values of d-axis and q-axis currents and the mechanical speed of the
rotor.

Equations

If you select Per-Unit (PU) in the Input units parameter, the block converts the inputs to SI units
before performing any computation. After calculating the output, the block converts the values back
to per-unit (PU) values.

The machine inductances and stator flux are represented as,

Ls = Lls + Lm

Lr = Llr + Lm

σ = 1−
Lm

2

Ls ⋅ Lr

λsd =
Lm
Lr

λrd + σLsisd

λsq = σLsisq

These equations describe how the block computes the feed-forward gain.

Vsd
FF = ωeλsd

Vsq
FF = − ωeλsq

For detailed set of equations and assumptions, see “Mathematical Model of Induction Motor” on page
1-190.

where:

• ωe is the electrical speed corresponding to frequency of stator voltages (Radians/ sec).
• Lls is the stator leakage inductance (Henry).

1 Blocks

1-196

• Llr is the rotor leakage inductance (Henry).

• Ls is the stator inductance (Henry).

• Lr is the rotor inductance (Henry).

• Lm is the magnetizing inductance of the motor (Henry).

• σ is the total leakage factor of the induction motor.
• λsd is the d-axis flux linkage of the stator (Weber).

• λsq is the q-axis flux linkage of the stator (Weber).

• λrd is the d-axis flux linkage of the rotor (Weber).

• isd and isq are the stator d- and q-axis currents (Amperes).

Ports
Input

Isd — D-axis stator current
scalar

Stator current along the d-axis of the rotating dq reference frame.
Data Types: single | double | fixed point

Isq — Q-axis stator current
scalar

Stator current along the q-axis of the rotating dq reference frame.
Data Types: single | double | fixed point

ωm — Mechanical speed of rotor
scalar

Mechanical speed of the rotor.
Data Types: single | double | fixed point

Output

VsdFF — D-axis feed-forward voltage
scalar

Feed-forward voltage along the d-axis of the rotating dq reference frame.
Data Types: single | double | fixed point

VsqFF — Q-axis feed-forward voltage
scalar

Feed-forward voltage along the q-axis of the rotating dq reference frame.
Data Types: single | double | fixed point

 ACIM Feed Forward Control

1-197

Parameters
Number of pole pairs — Number of pole pairs available in motor
2 (default) | scalar

Number of pole pairs available in the induction motor.

Stator leakage inductance (H) — Leakage inductance of stator winding
6.81e-3 (default) | scalar

Inductance due to leakage flux linked to the stator winding (in Henry).

Rotor leakage inductance (H) — Leakage inductance of rotor winding
6.81e-3 (default) | scalar

Inductance due to leakage flux linked to the rotor winding (in Henry).

Magnetizing Inductance (H) — Magnetizing inductance of induction motor
30e-3 (default) | scalar

Inductance due to the magnetizing flux (in Henry).

Rated Flux (Wb) — Rated flux of motor
38.2e-3 (default) | scalar

Rated flux of the induction motor (in Weber).

Output Saturation (V) — Saturation limit for output values
24/sqrt(3) (default) | scalar

Saturation limit (in Volts) for the block outputs VsdFF and VsqFF.

Input units — Unit of input values
Per-Unit (PU) (default) | SI Units

Unit of the input values.

Base Voltage (V) — Base voltage for per-unit system
24/sqrt(3) (default) | scalar

Base voltage (in Volts) for per-unit system.
Dependencies

To enable this parameter, set Input units to Per-Unit (PU).

Base Current (A) — Base current for per-unit system
5.3611 (default) | scalar

Base current (in Amperes) for per-unit system.
Dependencies

To enable this parameter, set Input units to Per-Unit (PU).

Base Speed (rpm) — Base speed for per-unit system
1500 (default) | scalar

1 Blocks

1-198

Base speed (in rpm) for per-unit system.

Dependencies

To enable this parameter, set Input units to Per-Unit (PU).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
PMSM Feed Forward Control | Park Transform | Speed Measurement | DQ Limiter | Discrete PI
Controller with anti-windup and reset

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

Introduced in R2020b

 ACIM Feed Forward Control

1-199

ACIM Slip Speed Estimator
Calculate slip speed of AC induction motor
Library: Motor Control Blockset / Controls / Control Reference

Description
The ACIM Slip Speed Estimator block computes the mechanical slip speed (difference between the
synchronous speed and rotor speed) of the induction motor.

The block accepts the reference values of d- and q-axis currents and outputs the computed slip speed
of the induction motor.

Equations

These equations describe the utilization of the slip speed value for field-oriented control (FOC) of the
induction motor:

τr =
Lr
Rr

ωe_slip =
Lm ⋅ isq

ref

τr ⋅ λrd

ωe = ωr + ωe_slip

θe = ∫ωe ⋅ dt =∫(ωr + ωe_slip) ⋅ dt = θr + θslip

If we keep the rotor flux as constant and the d-axis is aligned to the rotor flux reference frame, then
we can imply:

λrd = Lmisd

This block implements the preceding calculations as:

ωslip = 1
p

1
τr

isq
ref

isd
ref

For detailed set of equations and assumptions, see “Mathematical Model of Induction Motor” on page
1-190.

where:

• ωe_slip is the electrical slip speed of the rotor (Radians/ sec).
• ωslip is the mechanical slip speed of the rotor (Radians/ sec).

1 Blocks

1-200

• ωe is the electrical speed corresponding to frequency of stator voltages (Radians/ sec).
• ωm is the rotor mechanical speed (Radians/ sec).
• ωr is the rotor electrical speed (Radians/ sec).
• Lm is the magnetizing inductance of the motor (Henry).
• Rr is the rotor resistance referred to stator (Ohms).
• isd

ref and isq
ref are the reference stator d- and q-axis currents (Amperes).

• τr is the rotor time constant (sec).
• λrd is the d-axis flux linkage of the rotor (Weber).

Ports
Input

Isdref — Reference d-axis stator current
scalar

Reference d-axis stator current.
Data Types: single | double | fixed point

Isqref — Reference q-axis stator current
scalar

Reference q-axis stator current.
Data Types: single | double | fixed point

Output

⍵mslip — Slip speed of induction motor
scalar

Mechanical slip speed of the rotor that the block computes.
Data Types: single | double | fixed point

Parameters
Number of pole pairs — Number of pole pairs available in motor
2 (default) | scalar

Number of pole pairs available in the induction motor.

Rotor resistance (Ohm) — Rotor resistance of motor
1.05 (default) | scalar

Rotor resistance of the induction motor in Ohms.

Rotor leakage inductance (H) — Leakage inductance of rotor winding
6.81e-3 (default) | scalar

 ACIM Slip Speed Estimator

1-201

Inductance due to leakage flux linked to the rotor winding (in Henry).

Magnetizing inductance (H) — Magnetizing inductance of induction motor
30e-3 (default) | scalar

Inductance due to the magnetizing flux (in Henry).

Output saturation (rpm) — Saturation value for the block output
150 (default) | scalar

Saturation value for the block output (in rpm).

Input units — Unit of input values
Per-Unit (PU) (default) | SI Units

Unit of the input values.

Base speed (rpm) — Base speed for per-unit system
1500 (default) | scalar

Base speed (in rpm) for per-unit system.

Dependencies

To enable this parameter, set Input units to Per-Unit (PU).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Position Generator | Speed Measurement | ACIM Control Reference

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

Introduced in R2020b

1 Blocks

1-202

ACIM Torque Estimator
Estimate electromechanical torque and power
Library: Motor Control Blockset / Controls / Control Reference

Description
The ACIM Torque Estimator block generates electromechanical torque and power estimates for an
induction motor. The block outputs the mathematically computed electromechanical torque for
constant motor parameters. To measure an accurate torque value, we recommend that you use a
physical sensor.

The block accepts feedback values of d- and q-axis stator current and mechanical speed as inputs.

Equations

If you select Per-Unit (PU) in the Input units parameter, the block converts the inputs to SI units
before performing any computation. After calculating the output, the block converts the output back
to per unit values.

These equations describe the computation of electromechanical torque and power estimates by the
block.

Te = 3
2p

Lm
Lr

λrdisq

Pe = Te ⋅ ωm

For detailed set of equations and assumptions, see “Mathematical Model of Induction Motor” on page
1-190.

where:

• p is the number of pole pairs available in the motor.
• Lm is the magnetizing inductance of the motor (Henry).
• Lr is the rotor inductance (Henry).
• λrd is the d-axis flux linkage of the rotor (Weber).
• isq is the stator q-axis current (Amperes).
• ωm is the mechanical speed of the rotor (Radians/ sec).

 ACIM Torque Estimator

1-203

Ports
Input

Isd — D-axis stator current
scalar

Stator current along the d-axis of the rotating dq reference frame.
Data Types: single | double | fixed point

Isq — Q-axis stator current
scalar

Stator current along the q-axis of the rotating dq reference frame.
Data Types: single | double | fixed point

ωm — Mechanical speed of rotor
scalar

Mechanical speed of the rotor.
Data Types: single | double | fixed point

Output

Te — Electromechanical torque
scalar

Electromechanical torque of the rotor.
Data Types: single | double | fixed point

Pe — Electromechanical power
scalar

Electromechanical power of the rotor.
Data Types: single | double | fixed point

Parameters
Number of pole pairs — Number of pole pairs available in motor
2 (default) | scalar

Number of pole pairs available in the induction motor.

Stator leakage inductance (H) — Leakage inductance of stator winding
6.81e-3 (default) | scalar

Inductance due to leakage flux linked to the stator winding (in Henry).

Rotor leakage inductance (H) — Leakage inductance of rotor winding
6.81e-3 (default) | scalar

Inductance due to leakage flux linked to the rotor winding (in Henry).

1 Blocks

1-204

Magnetizing Inductance (H) — Magnetizing inductance of induction motor
30e-3 (default) | scalar

Inductance due to the magnetizing flux (in Henry)..

Rated Flux (Wb) — Rated flux of motor
38.2e-3 (default) | scalar

Rated flux of the induction motor (in Weber).

Input units — Unit of input values
Per-Unit (PU) (default) | SI Units

Unit of the input values.

Base Voltage (V) — Base voltage for per-unit system
24/sqrt(3) (default) | scalar

Base voltage (in Volts) for per-unit system.
Dependencies

To enable this parameter, set Input units to Per-Unit (PU).

Base Current (A) — Base current for per-unit system
5.3611 (default) | scalar

Base current (in Amperes) for per-unit system.
Dependencies

To enable this parameter, set Input units to Per-Unit (PU).

Base Speed (rpm) — Base speed for per-unit system
1500 (default) | scalar

Base speed (in rpm) for per-unit system.
Dependencies

To enable this parameter, set Input units to Per-Unit (PU).

Base torque (Nm) — Base torque for per-unit system
0.50072 (default) | scalar

Base torque (in Nm) for per-unit system. See “Per-Unit System” page for more details.

This parameter is not configurable and uses a value that is internally computed using other
parameters.
Dependencies

To display this parameter, set Input units to Per-Unit (PU).

Base power (W) — Base power for per-unit system
111.4284 (default) | scalar

Base power (in W) for per-unit system. See “Per-Unit System” page for more details.

 ACIM Torque Estimator

1-205

This parameter is not configurable and uses a value that is internally computed using other
parameters.

Dependencies

To display this parameter, set Input units to Per-Unit (PU).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Park Transform | Speed Measurement

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

Introduced in R2020b

1 Blocks

1-206

Six Step Commutation
Generate switching sequence for six-step commutation of brushless DC (BLDC) motor
Library: Motor Control Blockset / Controls / Control Reference

Description
The Six Step Commutation block uses a 120-degree conduction mode to generate a switching
sequence to implement six-step commutation (or trapezoidal commutation) on a three-phase BLDC
motor. You can use the switching signals to operate switches and control the stator currents, and
therefore, control motor speed and direction of rotation.

The block accepts the Hall sequence number or rotor position (from a position sensor such as a Hall
or a quadrature encoder sensor) and the direction of torque as inputs. It uses the Hall sequence or
position input to determine the sector where the rotor is present. The block computes the switching
sequence such that it energizes the corresponding phases to maintain the torque angle (angle
between rotor d-axis and stator magnetic field) of 90 degrees (with a deviation of 30 degrees).

This figure is an example that shows the stator magnetic field phasors along with their default Hall
sequence.

 Six Step Commutation

1-207

The block uses a commutation logic based on the Hall sequence to generate switching sequences.

Hall State (Hall a,
Hall b, Hall c)

Switching Sequence (AA' BB' CC')
AA' BB' CC'

5 (101) 00 10 01
4 (100) 01 10 00
6 (110) 01 00 10
2 (010) 00 01 10
3 (011) 10 01 00
1 (001) 10 00 01

This figure shows the stator magnetic field phasors along with the possible sectors (determined from
the input rotor position).

1 Blocks

1-208

The block uses a commutation logic based on the position sensor signals to generate switching
sequences.

Position (θ) Sector Switching Sequence (AA' BB' CC')
AA' BB' CC'

(-30°, 30°] 1 00 10 01
(30°, 90°] 2 01 10 00

(90°, 150°] 3 01 00 10
(150°, 210°] 4 00 01 10
(210°, 270°] 5 10 01 00
(270°, 330°] 6 10 00 01

 Six Step Commutation

1-209

Ports
Input

Hall — Hall sensor sequence
scalar

The Hall sensor sequence. If the Hall sensors are placed 120 degrees apart, the sequence number is
between 1 to 6. For a custom Hall sensor sequence (when the Hall sensors are placed 60 degrees
apart), the sequence number is between 0 to 7.
Dependencies

To enable this port, set Input type to Hall.
Data Types: single | double | fixed point

Position — Rotor position
scalar

Position detected by either the Hall or quadrature encoder sensor in radians (0 to 2π), degrees (0 to
360), or per unit (0 to 1).
Dependencies

To enable this port, set Input type to Position.
Data Types: single | double | fixed point

TorqueSign — Direction of rotation
scalar

Torque sign (+1 or -1) indicating the direction of rotation of the BLDC motor.
Data Types: single | double | fixed point

Output

Ctrl — Motor control switching sequence
scalar

1 Blocks

1-210

Switching sequence signals to implement six-step commutation (or trapezoidal commutation) on the
BLDC motor.
Data Types: single | double | fixed point

Parameters
Input type — Block input type
Hall (default) | Position

Type of position sensor feedback connected to the block input.

Position Unit — Unit of position input
Per-unit (default) | Degrees | Radians

Unit of position feedback input.
Dependencies

To enable this parameter, set Input type to Position.

Hall Sequence number — Hall sequence
[5,4,6,2,3,1] (default) | vector

Customized Hall sequence.

If the Hall sensors are placed 120 degrees apart, the sequence number is between 1 to 6. If the Hall
sensors are placed 60 degrees apart, the sequence number is between 0 to 7.
Dependencies

To enable this parameter, set Input type to Hall.

Enable custom commutation — Enable Commutation switching parameter
off (default) | on

Select this parameter for the block to enable the Commutation switching parameter.
Dependencies

To enable this parameter, set Input type to Hall.

Commutation switching — Commutation switching sequence
[0 0 1 0 0 1;0 1 1 0 0 0;0 1 0 0 1 0;0 0 0 1 1 0;1 0 0 1 0 0;1 0 0 0 0 1]
(default) | vector

Customized switching sequence for commutation of the BLDC motor.
Dependencies

To enable this parameter, set Input type to Hall and select Enable custom commutation
parameter.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 Six Step Commutation

1-211

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Mechanical to Electrical Position | Discrete PI Controller with anti-windup and reset

Topics
“Open-Loop and Closed-Loop Control”
“Six-Step Commutation”

Introduced in R2020b

1 Blocks

1-212

Vector Plot
Plot vectors in space domain
Library: Motor Control Blockset / Signal Management

Description
The Vector Plot block plots and tracks the changes in vectors in the space domain. You can use the
block to visualize vectors for electrical quantities (such as voltage and current) and track their
changes in real time by using the trace left behind by the vector tip.

The block accepts vector magnitudes and their angles (in radians, per-unit, or degrees) as inputs and
provides a pictorial representation of the vectors. The block also traces the plot history of the vector
tip according to the selected number of points.

For details about how to use the Vector Plot block, see the model mcb_pmsm_foc_qep_f28379d in
“Field-Oriented Control of PMSM Using Quadrature Encoder”.

Ports
Input

Vabc — Three-phase voltages
vector

Voltage components in the three-phase system in the abc reference frame. The port accepts three
voltage components multiplexed by using Mux.

Dependencies

To enable this port, set Select input types to Vabc Iabc Theta.
Data Types: single | double

Iabc — Three-phase currents
vector

Current components in the three-phase system in the abc reference frame. The port accepts three
current components multiplexed by using Mux.

Dependencies

To enable this port, set Select input types to Vabc Iabc Theta.
Data Types: single | double

Theta — Angle of transformation
scalar

 Vector Plot

1-213

Angle value (in radians, per-unit, or degrees for Vabc and Iabc) between the rotating reference
frame and the α-axis.

The figures show the angle of transformation when:

• The d-axis aligns with the α-axis.

• The q-axis aligns with the α-axis.

1 Blocks

1-214

In both cases, the angle is Theta = ωt, where:

• Theta is the angle between the α- and d-axes for the d-axis alignment or the angle between the
α- and q-axes for the q-axis alignment. It indicates the angular position of the rotating dq
reference frame with respect to the α-axis.

• ω is the rotational speed in the d-q reference frame.
• t is the time in seconds from the initial alignment.

Dependencies

To enable this port, set Select input types to Vabc Iabc Theta and set Select reference frame
to Rotating Reference Frame.
Data Types: single | double

Vdq — Voltages in dq reference frame
vector

Direct and quadrature axis voltage components in the rotating dq reference frame. The port accepts
two voltage components multiplexed by using Mux.

Dependencies

To enable this port, set Select input types to Vdq Idq.
Data Types: single | double

Idq — Currents in dq reference frame
vector

Direct and quadrature axis current components in the rotating dq reference frame. The port accepts
two currents components multiplexed by using Mux.

Dependencies

To enable this port, set Select input types to Vdq Idq.
Data Types: single | double

Magnitude — Vector magnitudes
vector

Magnitudes of vectors that you want to plot. The port accepts up to six vector magnitudes
multiplexed by using Mux. The vector magnitudes correspond to the angle values input to the Angle
port.

Note The number of multiplexed vector magnitudes should be same as the number of multiplexed
angles input to the Angle port.

Dependencies

To enable this port, set Select input types to Mag Angle.
Data Types: single | double

 Vector Plot

1-215

Angle — Vector angle
vector

Angle values (in radians, per-unit, or degrees) of vectors that you want to plot. The port accepts up to
six vector angles multiplexed by using Mux. The angle values correspond to the vector magnitudes
input to the Magnitude port.

Note The number of multiplexed vector angles should be same as the number of multiplexed
magnitudes input to the Magnitude port.

Dependencies

To enable this port, set Select input types to Mag Angle.
Data Types: single | double

Parameters
Select input types — Input port types
Vabc Iabc Theta (default) | Vdq Idq | Mag Angle

Types of input ports available for the block.

Select reference frame — Reference frame for vectors
Rotating Reference Frame (default) | Stationary Reference Frame

Select type of reference frame that the block uses to plot the input vectors:

• Rotating Reference Frame — Select this option to plot the three-phase voltage and current
vectors in the rotating dq reference frame.

1 Blocks

1-216

• Stationary Reference Frame — Select this option to plot the three-phase voltage and current
vectors in the stationary αβ reference frame.

 Vector Plot

1-217

Dependencies

To enable this parameter, set Select input types to Vabc Iabc Theta.

Alpha (phase-a) axis alignment — dq reference frame alignment
D-axis (default) | Q-axis

Align either the d- or q-axis of the rotating reference frame to the α-axis of the stationary reference
frame.

Dependencies

To enable this parameter, set Select input types to Vabc Iabc Theta and Select reference
frame to Rotating Reference Frame.

Theta units — Unit of Theta input
Radians (default) | Degrees | Per-unit

Unit of Theta input value.

1 Blocks

1-218

Dependencies

To enable this parameter, set Select input types to Vabc Iabc Theta and Select reference
frame to Rotating Reference Frame.

Angle units — Unit of Angle input
Radians (default) | Degrees | Per-unit

Unit of Angle input value.

Dependencies

To enable this parameter, set Select input types to Mag Angle.

Open plot at simulation start — Open vector plot at simulation start
on (default) | off

Select this parameter to automatically open the vector plot window when simulation begins.

Showplot — Click this button to open the vector plot window.

Vector Plot Window

This example shows the plot when you set Select input types to Mag Angle and provide three
multiplexed magnitudes and three multiplexed angles as inputs.

You can use these buttons on the Vector Plot window:

 Vector Plot

1-219

•
 (Save Figure) — Click to save the plot to an image.

•
 (Preferences) — Click to open the Preferences dialog box.

• Display traces (samples) — Enter the number of samples that you want to trace for the
vector tip. By default, the field uses the value 100.

• Auto-Scale — Select this field to automatically scale the axes limit. The block performs auto-
scaling every at every 1000 points of simulation.

• Axes limit — Enter the maximum value of the x and y axis that the plot should use. By default,
the field uses the value 1. If you select Auto-Scale and the vector magnitude increases beyond
the selected axes limit, the limit on the Vector Plot window extends automatically to
accommodate the vector magnitude.

• (Run Simulation) — Click to simulate the model that contains the Vector Plot block.

 (Pause Simulation) — Click to pause simulation.
• (Stop Simulation) — Click to stop simulation.
• (Clear Data History) — Click to clear the vector tracing history.
• (Insert Legend) — Click to insert or remove the legend describing the vectors. You can

manually change the default legend description.

•
 (Auto Scale) — Click to turn on or turn off the auto-scale function.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Topics
“Field-Oriented Control of PMSM Using Quadrature Encoder”

Introduced in R2020b

1 Blocks

1-220

Induction Motor
Three-phase induction motor
Library: Powertrain Blockset / Propulsion / Electric Motors and

Inverters
Motor Control Blockset / Electrical Systems / Motors

Description
The Induction Motor block implements a three-phase induction motor. The block uses the three-phase
input voltages to regulate the individual phase currents, allowing control of the motor torque or
speed.

By default, the block sets the Simulation Type parameter to Continuous to use a continuous
sample time during simulation. If you want to generate code for fixed-step double- and single-
precision targets, considering setting the parameter to Discrete. Then specify a Sample Time, Ts
parameter.

Three-Phase Sinusoidal Model Electrical System

The block implements equations that are expressed in a stationary rotor reference (qd) frame. The d-
axis aligns with the a-axis. All quantities in the rotor reference frame are referred to the stator.

The block uses these equations to calculate the electrical speed (ωem) and slip speed (ωslip).

 Induction Motor

1-221

ωem = Pωm
ωslip = ωsyn− ωem

To calculate the dq rotor electrical speed with respect to the rotor A-axis (dA), the block uses the
difference between the stator a-axis (da) speed and slip speed:

ωdA = ωda− ωem

To simplify the equations for the flux, voltage, and current transformations, the block uses a
stationary reference frame:

ωda = 0
ωdA = − ωem

Calculation Equation
Flux d

dt
λsd
λsq

=
vsd
vsq

− Rs
isd
isq

− ωda
0 −1
1 0

λsd
λsq

d
dt

λrd
λrq

=
vrd
vrq

− Rr
ird
irq

− ωdA
0 −1
1 0

λrd
λrq

λsd
λsq
λrd
λrq

=

Ls 0
0 Ls

Lm 0
0 Lm

Lm 0
0 Lm

Lr 0
0 Lr

isd
isq
ird
irq

Current isd
isq
ird
irq

= 1
Lm

2 − LrLs

−Lr 0
0 −Lr

Lm 0
0 Lm

Lm 0
0 Lm

−Ls 0
0 −Ls

λsd
λsq
λrd
λrq

Inductance Ls = Lls + Lm
Lr = Llr + Lm

Electromagnetic torque Te = PLm(isqird− isdirq)
Power invariant dq transformation to
ensure that the dq and three phase
powers are equal

vsd
vsq

= 2
3

cos(Θda) cos(Θda−
2π
3) cos(Θda + 2π

3)

−sin(Θda) −sin(Θda−
2π
3) −sin(Θda + 2π

3)

va
vb
vc

ia
ib
ic

= 2
3

cos(Θda) −sin(Θda)

cos(Θda−
2π
3)

cos(Θda + 2π
3)

−sin(Θda−
2π
3)

−sin(Θda + 2π
3)

isd
isq

1 Blocks

1-222

The equations use these variables.

ωm Angular velocity of the rotor (rad/s)
ωem Electrical rotor speed (rad/s)
ωslip Electrical rotor slip speed (rad/s)
ωsyn Synchronous rotor speed (rad/s)
ωda dq stator electrical speed with respect to the rotor a-axis (rad/s)
ωdA dq stator electrical speed with respect to the rotor A-axis (rad/s)
Θda dq stator electrical angle with respect to the rotor a-axis (rad)
ΘdA dq stator electrical angle with respect to the rotor A-axis (rad)
Lq, Ld q- and d-axis inductances (H)
Ls Stator inductance (H)
Lr Rotor inductance (H)
Lm Magnetizing inductance (H)
Lls Stator leakage inductance (H)
Llr Rotor leakage inductance (H)
vsq, vsd Stator q- and d-axis voltages (V)
isq, isd Stator q- and d-axis currents (A)
λsq, λsd Stator q- and d-axis flux (Wb)
irq, ird Rotor q- and d-axis currents (A)
λrq, λrd Rotor q- and d-axis flux (Wb)
va, vb, vc Stator voltage phases a, b, c (V)
ia, ib, ic Stator currents phases a, b, c (A)
Rs Resistance of the stator windings (Ohm)
Rr Resistance of the rotor windings (Ohm)
P Number of pole pairs
Te Electromagnetic torque (Nm)

Mechanical System

The motor angular velocity is given by:

d
dtωm = 1

J Te− Tf − Fωm− Tm

dθm
dt = ωm

The equations use these variables.

J Combined inertia of motor and load (kgm^2)
F Combined viscous friction of motor and load (N·m/(rad/s))
θm Motor mechanical angular position (rad)
Tm Motor shaft torque (Nm)

 Induction Motor

1-223

Te Electromagnetic torque (Nm)
Tf Motor shaft static friction torque (Nm)
ωm Angular mechanical velocity of the motor (rad/s)

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal Description Variab
le

Equations

PwrIn
fo

PwrTrnsfrd — Power
transferred between blocks

• Positive signals indicate flow
into block

• Negative signals indicate
flow out of block

PwrMtr Mechanical
power

Pmot Pmot = − ωmTe

PwrBus Electrical
power

Pbus Pbus = vania + vbnib
+ vcnic

PwrNotTrnsfrd — Power
crossing the block boundary, but
not transferred

• Positive signals indicate an
input

• Negative signals indicate a
loss

PwrElec
Loss

Resistive
power loss

Pelec Pelec = − (Rsisd
2 + Rsisq

2

+ − Rrird
2 + Rrirq

2)
PwrMech
Loss

Mechanical
power loss

Pmech When Port
Configuration is set to
Torque:

Pmech = −
ωm

2 F + ωm Tf

When Port
Configuration is set to
Speed:

Pmech = 0
PwrStored — Stored energy
rate of change

• Positive signals indicate an
increase

• Negative signals indicate a
decrease

PwrMtrS
tored

Stored motor
power

Pstr Pstr = Pbus + Pmot +
 Pelec + Pmech

The equations use these variables.

Rs Stator resistance (Ohm)
Rr Motor resistance (Ohm)
ia, ib, ic Stator phase a, b, and c current (A)
isq, isd Stator q- and d-axis currents (A)
van, vbn, vcn Stator phase a, b, and c voltage (V)
ωm Angular mechanical velocity of the rotor (rad/s)

1 Blocks

1-224

F Combined motor and load viscous damping (N·m/(rad/s))
Te Electromagnetic torque (Nm)
Tf Combined motor and load friction torque (Nm)

Ports
Input

LdTrq — Load torque on motor
scalar

Load torque on the motor shaft, Tm, in N·m.

Dependencies

To create this port, select Torque for the Port configuration parameter.

Spd — Rotor shaft speed
scalar

Angular velocity of the rotor, ωm, in rad/s.

Dependencies

To create this port, select Speed for the Port configuration parameter.

PhaseVolt — Stator terminal voltages
1-by-3 array

Stator terminal voltages, Va, Vb, and Vc, in V.

Output

Info — Bus signal
bus

The bus signal contains these block calculations.

Signal Description Variable Units
IaStator Stator phase current A ia A
IbStator Stator phase current B ib A
IcStator Stator phase current C ic A
IdSync Direct axis current id A
IqSync Quadrature axis current iq A
VdSync Direct axis voltage vd V
VqSync Quadrature axis voltage vq V
MtrSpd Angular mechanical velocity of the

rotor
ωm rad/s

MtrMechPos Rotor mechanical angular position θm rad

 Induction Motor

1-225

Signal Description Variable Units
MtrPos Rotor electrical angular position θe rad
MtrTrq Electromagnetic torque Te N·m
PwrInfo PwrTrnsfrd PwrMtr Mechanical power Pmot W

PwrBus Electrical power Pbus W
PwrNotTrns
frd

PwrElec
Loss

Resistive power loss Pelec W

PwrMech
Loss

Mechanical power loss Pmech W

PwrStored PwrMtrS
tored

Stored motor power Pstr W

PhaseCurr — Phase a, b, c current
1-by-3 array

Phase a, b, c current, ia, ib, and ic, in A.

MtrTrq — Motor torque
scalar

Motor torque, Tmtr, in N·m.
Dependencies

To create this port, select Speed for the Port configuration parameter.

MtrSpd — Motor speed
scalar

Angular speed of the motor, ωmtr, in rad/s.
Dependencies

To create this port, select Torque for the Port configuration parameter.

Parameters
Block Options

Simulation type — Select simulation type
Continuous (default) | Discrete

By default, the block uses a continuous sample time during simulation. If you want to generate code
for single-precision targets, considering setting the parameter to Discrete.
Dependencies

Setting Simulation Type to Discrete creates the Sample Time, Ts parameter.

Sample time, Ts — Sample time for discrete integration
0.001 (default) | scalar

Integration sample time for discrete simulation, in s.

1 Blocks

1-226

Dependencies

Setting Simulation Type to Discrete creates the Sample Time, Ts parameter.

Port configuration — Select port configuration
Torque (default) | Speed

This table summarizes the port configurations.

Port Configuration Creates Input Port Creates Output Port
Torque LdTrq MtrSpd
Speed Spd MtrTrq

Load Parameter Values

File — Path to motor parameter ".m" or ".mat" file
scalar

Enter the path to the motor parameter ".m" or ".mat" file that you saved using the Motor Control
Blockset parameter estimation tool. You can also click the Browse button to navigate and select the
".m" or ".mat" file, and update File parameter with the file name and path. For details related to the
motor parameter estimation process, see “Estimate PMSM Parameters Using Recommended
Hardware”.

• Load from file - Click this button to read the estimated motor parameters from the ".m" or ".mat"
file (indicated by the File parameter) and load them to the motor block.

• Save to file - Click this button to read the motor parameters from the motor block and save them
into a ".m" or ".mat" file (with a file name and location that you specify in the File parameter).

Note Before you click Save to file button, ensure that the target file name in the File parameter has
either ".m" or ".mat" extension. If you use any other file extension, the block displays an error
message.

Parameters

Number of pole pairs, P — Pole pairs
2 (default) | scalar

Motor pole pairs, P.

Stator resistance and leakage inductance, Zs — Resistance and inductance
[1.77 0.0139] (default) | vector

Stator resistance, RS, in ohms and leakage inductance, Lls, in H.

Rotor resistance and leakage inductance, Zr — Resistance and inductance
[1.34 0.0121] (default) | vector

Rotor resistance, Rr, in ohms and leakage inductance, Llr, in H.

Magnetizing inductance, Lm — Inductance
0.3687 (default) | scalar

 Induction Motor

1-227

Magnetizing inductance, Lm, in H.

Physical inertia, viscous damping, static friction, mechanical — Inertia,
damping, friction
[0.001 0 0] (default) | vector

Mechanical properties of the rotor:

• Inertia, J, in kg·m^2
• Viscous damping, F, in N·m/(rad/s)
• Static friction, Tf, in N·m

Dependencies

To enable this parameter, select Torque for the Port configuration.

Initial Values

Initial mechanical position, theta_init — Angular position
0 (default) | scalar

Initial rotor angular position, θm0, in rad.

Initial mechanical speed, omega_init — Angular speed
0 (default) | scalar

Initial angular velocity of the rotor, ωm0, in rad/s.

Dependencies

To enable this parameter, select Torque for the Port configuration.

References
[1] Mohan, Ned. Advanced Electric Drives: Analysis, Control and Modeling Using Simulink.

Minneapolis, MN: MNPERE, 2001.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also

Introduced in R2020b

1 Blocks

1-228

Sliding Mode Observer
Compute electrical position and mechanical speed of a surface-mount PMSM
Library: Motor Control Blockset / Sensorless Estimators

Description
The Sliding Mode Observer block computes the electrical position and mechanical speed of a Surface
Mount PMSM by using the voltage and current values along the α- and β-axes of the stationary αβ
reference frame.

Equations

These equations describe the discrete-time operation of a PMSM:

iαβ(k + 1) = Aiαβ(k) + Bvαβ(k)− Beαβ(k)

eαβ(k + 1) = eαβ(k) + Tsωe(k) Jeαβ(k)

J =
0 −1
1 0

Φ =
−R

L 0

0 −R
L

A = eΦTs

B = ∫
0

Ts
eΦτdτ =

b 0
0 b

b = 1− e−RTs/L

R

These equations describe the discrete-time sliding mode observer operation of a surface mount
PMSM:

i αβ(k + 1) = Ai αβ(k) + Bvαβ(k)− Be αβ(k)− ηSign(i αβ(k))

e αβ(k + 1) = e αβ(k) + B−1g(i αβ(k)− Ai αβ(k− 1) + ηSign(i αβ(k− 1)))

i αβ(k) = i αβ(k)− iαβ(k)

 Sliding Mode Observer

1-229

eαβ(k) = e αβ(k)− eαβ(k)

If the back EMF observer fulfils the conditions eαβ(k + 1)− eαβ(k) ≤ m and g ∈ (0, 1), there exists a k0,
such that:

eαβ(k) < m
g

If the sliding mode observer fulfils these conditions:

• g ∈ (0, 1)
• eαβ(k + 1)− eαβ(k) ≤ m
• η > bm

g

then there exists a k=k0, such that for k≥k0:

i αβ(k) ≤ η + bm
g

where:

• eα and iα are the stator back EMF and current for the α axis
• eβ and iβ are the stator back EMF and current for the β axis
• ẽα and ĩα are the errors in the stator back EMF and current for the α axis
• ẽβ and ĩβ are the errors in the stator back EMF and current for the β axis
• vα and vβ are the stator supply voltages
• R is the stator resistance
• L is the stator inductance
• g is the back EMF observer gain
• η is the current observer gain
• ωe is the electrical angular velocity
• Ts is the sampling period
• k is the sample count

Tuning

Use these steps to tune the block using the Current observer gain (η) and Back-emf observer
gain (g) parameters.

• Select a back-emf observer gain (g) value such that g ∈ (0, 1). Bringing g close to the value 1,
results in less error in the estimated back-emf. However, this makes convergence slow.

• Select a value of m based on the block sample time and maximum slope of the operating back-emf
(such that eαβ(k + 1)− eαβ(k) ≤ m).

• Select a current observer gain (η) value based on b, m, and g (such that η > bm
g).

Note The block functions correctly when you tune the sliding mode observer gains.

1 Blocks

1-230

When using open-loop control to run a motor, compute the rotor position using both sliding mode
observer and an actual sensor hardware and compare the computed position values. If the difference
is acceptable, the block functions correctly. Otherwise, manually tune the sliding mode observer gains
to ensure that the block functions accurately.

The transition from open-loop control to closed-loop control may fail due to noise in the currents and
voltages. To make a successful transition, try reducing the value of the Filter cut-off frequency
(Hz) parameter.

Ports
Input

Vα — α-axis voltage
scalar

Voltage component along the α-axis of the stationary αβ reference frame.
Data Types: single | double | fixed point

Vβ — β-axis voltage
scalar

Voltage component along the β-axis of the stationary αβ reference frame.
Data Types: single | double | fixed point

Iα — α-axis current
scalar

Current component along the α-axis of the stationary αβ reference frame.
Data Types: single | double | fixed point

Iβ — β-axis current
scalar

Current component along the β-axis of the stationary αβ reference frame.
Data Types: single | double | fixed point

Rst — Reset the block
scalar

The pulse (true value) that resets and restarts the processing of the block algorithm.
Data Types: single | double | fixed point

Output

θe — Electrical position of PMSM
scalar

The estimated electrical position of the rotor.
Data Types: single | double | fixed point

 Sliding Mode Observer

1-231

⍵m — Mechanical speed of PMSM
scalar

The estimated mechanical speed of the rotor.
Data Types: single | double | fixed point

Parameters
Input units — Unit of block inputs
SI unit (default) | Per-unit

Unit of the input voltage and current components along the α-axis and β-axis of the stationary αβ
reference frame.

Discrete step size (s) — Sample time after which block executes again
50e-6 (default) | scalar

The fixed time interval (in seconds) between every two consecutive instances of block execution.

Motor parameters

Stator resistance (ohm) — Resistance
0.36 (default) | scalar

Stator phase winding resistance (in ohm).

Stator inductance (H) — Inductance
0.2e-3 (default) | scalar

Stator phase winding inductance (in Henry).

Maximum application speed (RPM) — Maximum supported speed
6000 (default) | scalar

Maximum speed (in RPM) that the block can support. For a speed beyond this value, the block
generates incorrect outputs.

Number of pole pairs — Number of pole pairs available in motor
4 (default) | scalar

Number of pole pairs available in the motor.

Base voltage (V) — Nominal voltage corresponding to one per unit
13.8564 (default) | scalar

The maximum phase voltage applied to the PMSM. For details, see “Per-Unit System”.

Base current (A) — Nominal current corresponding to one per unit
21.4286 (default) | scalar

The maximum measurable current supplied to the PMSM. For details, see “Per-Unit System”.

Note The Sliding Mode Observer block might occasionally display the warning message 'Wrap on
overflow detected.'

1 Blocks

1-232

Observer Parameters

Back-emf observer gain — Sliding mode observer gain for back-emf
0.9 (default) | scalar

The gain that ensures the convergence of the back-emf observer.

Current observer gain — Sliding mode observer gain for current
0.50881 (default) | scalar

The gain that ensures the convergence of the current observer.

Filter cut-off frequency (Hz) — Cut-off frequency of internal filter
1200 (default) | scalar

The cut-off frequency of the internal low-pass IIR filter. The cut-off frequency value must be greater
than or equal to the maximum electrical frequency.

Click Compute default parameters to calculate approximate observer gains and the filter
coefficient and update these fields. For this calculation, we set g to 0.9, computed m at twice the
rated speed, and set η to 1.1 bm

g .

Datatypes

Position unit — Unit of position output
Radians (default) | Degrees | Per unit

Unit of the position output.

Position data type — Data type of position output
single (default) | double | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) | <data type
expression>

Data type of the position output.

Speed unit — Unit of speed output
RPM (default) | Degrees/sec | Radians/sec | Per unit

Unit of the speed output.

Speed data type — Data type of speed output
single (default) | double | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) | <data type
expression>

Data type of the speed output.

References
[1] T. Bernardes, V. F. Montagner, H. A. Gründling, and H. Pinheiro, "Discrete-Time Sliding Mode

Observer for Sensorless Vector Control of Permanent Magnet Synchronous Machine," in IEEE
Transactions on Industrial Electronics, vol. 61, no. 4, pp. 1679-1691, 2014

[2] B. Bose, Modern Power Electronics and AC Drives. Prentice Hall, 2001. ISBN-0-13-016743-6.

 Sliding Mode Observer

1-233

[3] J. Liu and X. Wan, "Advanced Sliding Mode Control for Mechanical Systems". Springer-Verlag
Berlin Heidelberg, 2011.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Flux Observer | Clarke Transform | Inverse Park Transform | Sine-Cosine Lookup | Discrete PI
Controller with anti-windup and reset

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

Introduced in R2021b

1 Blocks

1-234

	Blocks
	DQ Limiter
	PMSM Feed Forward Control
	PMSM Torque Estimator
	Position Generator
	Derating Function
	Discrete PI Controller with anti-windup and reset
	Discrete PI Controller
	3-Phase Sine Voltage Generator
	atan2
	Clarke Transform
	Inverse Clarke Transform
	Inverse Park Transform
	Park Transform
	Sine-Cosine Lookup
	PWM Reference Generator
	Protection Relay
	Hall Speed and Position
	Hall Validity
	Mechanical to Electrical Position
	Quadrature Decoder
	Resolver Decoder
	Software Watchdog Timer
	Speed Measurement
	Sliding Mode Observer
	IIR Filter
	MTPA Control Reference
	Vector Control Reference
	Average-Value Inverter
	Host Serial Receive
	Host Serial Setup
	Host Serial Transmit
	Flux Observer
	Interior PMSM
	Surface Mount PMSM
	Field Oriented Control Autotuner
	ACIM Control Reference
	ACIM Feed Forward Control
	ACIM Slip Speed Estimator
	ACIM Torque Estimator
	Six Step Commutation
	Vector Plot
	Induction Motor
	Sliding Mode Observer

